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Abstract

There have been many attempts to explain how the large-scale structure of our cosmos
has formed and is developing. We are, however, still unable to make an unambiguous
classification of features of the cosmic web or make qualitative predictions. The usual
approach to model large-scale structure formation is to assume that in the very early
universe, the baryonic and dark matter was distributed in a certain way and that this
matter distribution then evolved according to certain mechanics into the universe as we
observe it now. In my thesis, I assume that the initial matter distribution can be modeled
by Gaussian random fields. For the evolutionary mechanics, I use Lagrangian fluid
dynamical approximations. In these approximations, layers of matter will flow through
each other, a process called shell-crossing, which creates regions of infinite density, called
caustics. These caustics can be seen as a skeleton of the cosmic web, both in the initial
conditions as in the current large-scale structure. In my thesis, I look at the role of these
caustics in structure formation, compare the caustics skeleton to numerical simulations of
the cosmic web and try to make qualitative predictions of the skeleton as function of the
initial distribution of the perturbations. We first concentrate on the linear Lagrangian
approximation, known as the Zel’dovich approximation, and subsequently extend our
approach to higher corrections and effective field theories. In particular, I try to estimate
the length of lines and density of vertices in the skeleton in the early and present day
universe.




Contents

Introduction
Cosmology
2.1
2.2
2.3

2.3.1
2.4

Einstein field equations
Friedmann equations
Cosmological toy models

Radiation-dominated universe . . . . . . . . . . .. ... ... ...

2.3.2 Einstein-de Sitter universe . . . . . . . . . . . ...

2.3.3 De Sitter universe
The concordance model

24.1

Open problems in cosmology . . . . . . . .. ... ... ......

Large-Scale Structure Formation

3.1
3.2
3.3
3.4

3.5

The Boltzmann equation

Evolution of matter density fluctuations . . . . . . . ... ... ... ...

Linear Eulerian perturbation theory . . . . . ... ... ... ... ....

Lagrangian perturbation

3.4.1

Zel’dovich approximation

3.5.1

Lagrangian comoving fluid equations . . . . . . . . ... ... ...

Truncated Zel’dovich approximation . . . ... ... ... ... ..
3.5.2  Adhesion model

Caustics in N-Body Simulations
4.1 Simulation of dark matter . . . . . . . .. ... ... ... ... ...

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

Leap-Frog integrator . . . . . . . .. .. ... oL
The Zel’dovich approximation . . . . . . . . ... .. .. ......

Mass deposition

4.2 Caustics in one-dimensional simulations . . . . . . . ... ... ... ...

4.3 Caustics in two-dimensional simulations . . . . . . . . . . ... ... ...

4.4 Caustics in three-dimensional simulations . . . . . . . . . . .. ... ...

11

17
18
19
22
22
23
23
24
24

25
25
28
29
31
31
33
37
38



Contents 4

5 Lagrangian Catastrophe Theory 49
5.1 Caustics . . . . . . oL 49
5.2 As: The fold catastrophe . . . . . . . . ... ... .. 50
5.3 As: The cusp catastrophe . . . . . . . . .. ... ... 52
54 Ay The swallowtail catastrophe . . . . . . .. .. ... ... 56
5.5 Dy The umbilic catastrophes . . . . . . . ... ... o L. 56
5.6 Five-dimensional catastrophes . . . . . . . ... .. oL 56

6 Caustics in the Zel’dovich Approximation 59
6.1 Caustics in the Zel’dovich-approximation . . . .. . ... ... ... ... 59
6.2 Catastrophes in the one-dimensional Zel’dovich approximation . . . . .. 60
6.3 Catastrophes in the two-dimensional Zel’dovich approximation . . . . .. 61

6.3.1 As: The fold catastrophe . . .. ... ... ... ... ....... 63
6.3.2 Ajs: The cusp catastrophe . . . . . . .. ... ... ... .. 65
6.3.3 Ay: The swallowtail catastrophe . . . . ... ... .. ... .... 66
6.3.4 Dj4: The umbilic catastrophe . . . . . ... ... ... ... .... 66
6.4 Catastrophe in the Zel’dovich approximation with vorticity . . .. .. .. 68
6.5 Embryonic caustic skeleton . . . . . .. ... o oL 72

7 Catastrophe Theory: Arnol’d’s Classification Theorem 75
7.1 Classification of nondegenerate critical points . . . . . . . ... ... ... 76
7.2 Classification of simple degenerate critical points . . . . . . .. . ... .. 78

7.2.1 The reduction lemma . . . . .. ... ... ... ... .. ..., 79

7.2.2 Determinacy . . . . . . . . .. 79

7.2.3 Simple critical points and codimension . . . . . . ... .. ... .. 83
7.2.4 Arnol’d’s and Thom’s classification theorem of critical points of

codimension at most 4 . . . . . .. ... Lo 84

7.2.5 Unfoldings . . . . .. . . . . 87

7.3 Lagrangian catastrophe theory . . . . .. . ... ... ... ... ... 89

8 Gaussian Random Field Theory 93
8.1 Gaussian random fields. . . . . . . . .. ... L 94
8.2 Gaussian random fields on Euclidean spaces . . . . . . . . .. ... .. .. 95
8.3 Smoothing realizations of random fields . . . . .. ... .. ... ... .. 99
8.4 Generating realizations of Gaussian random fields . . . . . . .. .. .. .. 99
8.5 Correlations of Gaussian random fields . . . . . ... .. .. ... ... .. 101

8.5.1 Correlations in one dimension . . . . . . .. ... ... ... .... 102
8.5.2 Correlations in two dimensions . . . . . .. ... ... ... .... 103

9 Gaussian Random Fields in Cosmology 107

9.1 The cosmic microwave background from inflation . . . . . .. ... .. .. 108

9.1.1 The evolution of quantum fluctuations in the Heisenberg picture . 110
9.1.2 The evolution of quantum fluctuations in the Schrodinger picture . 113
9.1.3 Collapse of the wave function . . . . . ... ... ... .. ..... 114




5 Contents

9.2 Gaussian random fields from the central limit theorem . . . . . . . . . ..
9.3 The cosmic microwave background . . . . . ... ...

10 Geometric Statistics of Random Fields
10.1 Point statistics of random fields . . . . . . . . ... ... ... ... ...
10.1.1 Rice’sformula . . . . . . . . . . ..
10.1.2 d-dimensional one-point correlation . . . . . . . .. ... 0L,
10.1.3 Two-point correlation functions . . . . . . . . ... ... ... ...
10.2 Line statistics of random fields . . . . . . .. ... ... ... .......

11 Critical Line Statistics
11.1 Morse-Smale complex . . . . . . . . ...
11.2 Skeleton based on Morse-Smale complex . . . . . . ... ... ... ....
11.3 Morse-Smale skeleton versus caustics skeleton . . . . . . . ... ... ...

11.3.1 Dynamics of caustics skeleton . . . . . . ... ... ... ...

12 Analytic Statistics of Caustics in one Dimension
12.1 Eigenvalue distribution . . . . . . . .. .. oo o oo
12.2 As point density . . . . . ...
12.3 As two-point correlation functions . . . . . . ... ... oL L.
12.4 Ag point density . . . . . . . ..
12.5 As two-point correlation function . . . . . . .. ... oo 0oL
12.6 Correlation function in Zel’dovich approximation . . . . .. ... ... ..

13 Analytic Statistics of Caustics in two Dimensions
13.1 Properties of eigenvalues . . . . . . .. ... oL
13.1.1 Doroshkevich formula in two-dimensions . . . . . .. ... ... ..
13.1.2 Unconditional distribution of eigenvalues . . .. ... .. .. ...
13.1.3 The distribution of eigenvalues constrained with derivatives . . . .
13.1.4 Density of points with specific eigenvalue configurations . . . . . .
13.2 As point distribution . . . . .. ... Lo
13.3 A4 point distribution . . . . . ...
13.4 Dy distribution . . . . . . ...
13.5 Aglinelength . . . . . . . . . ..
13.6 Az linelength . . . . . . . . . .. L

14 Numerical Statistics of Caustics
14.1 One-dimensional caustics . . . . . . . . . . .
14.2 Two-dimensional caustics in Lagrangian space . . . . . . . .. .. ... ..

14.3 Two-dimensional caustics in Eulerian space . . . . . . . .. ... ... ..




Contents 6

15 Quantum Field Theory and Feynman Diagrams 167
15.1 Classical mechanics . . . . . . . . . .. ... 167
15.1.1 Newtonian mechanics . . . . . .. ... ... ... ... .. .... 167

15.1.2 Lagrangian mechanics . . . . . .. ... ... ... ... 168

15.1.3 Hamiltonian mechanics . . . . . . ... .. .. ... ... .. .. 169

15.2 Path integral formulation of quantum physics . . . . . . . ... ... ... 170
15.3 Quantum field theory . . . . . . . .. .. L 172
15.3.1 Gaussian quantum field theory . . . . . . ... ... ... ... 173

15.3.2 ¢* theory and Feynman diagrams . . . . .. ... .. ....... 174

15.4 Effective field theory in quantum systems . . . . .. ... ... ... ... 175

16 Standard and Effective Perturbation Theories of Large-Scale Structurel77

16.1 Standard perturbation theory . . . . . . . ... ... oo 177
16.1.1 Solutions and tree diagrams . . . . . . . . ... ... .. ... 178
16.1.2 Correlation functions and loop diagrams . . . . . . ... ... ... 179

16.2 Effective equation of motion . . . . . . . . . . ... ... .. ... ... .. 181
16.2.1 Effective perturbation theory . . . . . . .. ... ... ... .... 183

17 Perturbation Theory of Eulerian Large-Scale Structure Formation 185

17.1 Eulerian equations of motion . . . . . . . . . ... ... ... ... ..., 185
17.2 Standard perturbation theory . . . . . . . ... ... oL 186
17.3 Eulerian effective field theory . . . . . . . . ... ... ... ... ..... 187

18 Perturbation Theory of Lagrangian Large-Scale Structure Formation 191
18.1 Lagrangian standard perturbation theory in single-flow regions . . . . . . 191
18.1.1 One-dimensional universe . . . . . . . . ... ... ... .. .... 193

18.1.2 Two-dimensional universe . . . . . . . . . .. ... ... ... 195

18.1.3 Three dimensional universe . . . . . . .. ... ... ... ..... 197

18.2 Transversal displacement term in standard perturbation theory . . . . .. 198
18.3 Lagrangian standard perturbation theory with multi-flow regions . . . . . 199
18.4 Lagrangian effective field theory . . . . . . . .. .. .. ... ... ... .. 200

19 Statistics of Caustics in General Lagrangian Approaches 201
19.1 Caustics conditions in Lagrangian approaches . . . . . . . ... ... ... 201
19.1.1 Caustics in one dimension . . . . . . . ... ... ... 201

19.1.2 Caustics in two dimensions . . . . . . .. ... ..o 202

19.2 Statistics of caustics in standard and effective perturbation theory . . . . 202

20 Conclusion 205
21 Discussion 207
21.1 Extensions . . . . . . . ... 207
21.2 Applications . . . . . . . . . 209

Bibliography 211




7 Contents

A N-Body simulation 217

B Effective Corrections From Newtonian Symmetries 225




Contents




Acknowledgements

I would like to thank Rien van de Weygaert, Aernout van Enter and Diederik Roest, for
there guidance and supervision. I furthermore would like to thank Johan Hidding for our
close collaboration, helpful discussions, insight and help with numerical computations.
The thesis presented here could not have been written in the current form without their
help. I finally would like to thank Bernard Jones for the discussions on Gaussian random
field theory and geometric statistics.



Contents

10




Chapter 1

Introduction

Mankind has always been fascinated by questions about its own origin. Where do we
come from and how did the universe come about? Did time start at some instant and is
there an end of time? Until the start of the twentieth century, answers to these questions
remained merely philosophical. Newton’s law of gravitation was simply not sufficient to
model the evolution of the universe. However, since the discovery of general relativity by
Albert Einstein in 1916, this has dramatically changed. Cosmology has developed into
an exciting science with many revolutionary new insights, often rewarded with Nobel
Prizes.

Using Einstein’s theory of general relativity, the Russian physicist Alexander Fried-
mann derived equations that describe the expansion of space in homogeneous and isotropic
models of the universe. In such models, a universe can expand and contract; it can have
a beginning and an ultimate end. Final proof in favor of a universe with a beginning —
a Big Bang — was found by Arno Penzias and Robert Wilson. They observed the after-
glow emitted by some hot medium, present at some earlier epoch. For this (accidental!)
observation Penzias and Wilson were awarded with a Nobel Prize. The afterglow, or
radiation field, they observed is nowadays known as the cosmic microwave background.
It is a relic of the early universe. Many more detailed studies followed. The most recent
complete survey was performed with the Planck satellite and its observation is depicted
in figure 1.1. This figure shows the density fluctuations in the early universe or, to be
more precise, at the moment the universe became neutral.

Not only the past, but also the present universe can nowadays be observed in great
detail. The Sloan Digital Sky Survey (SDSS) and the two-degree-Field Galaxy Redshift
Survey (2dF) are, at the moment, the most complete surveys of the galaxy distribution
at the mega parsec scale (see figure 1.2). In the depicted observations we can distinguish
a very striking structure: the cosmic web (or large-scale structure). This web contains
points, lines and surfaces, that are commonly referred to as clusters, filaments and walls.
These structures are largely in agreement with simulations of the current universe, as
predicted based on the early universe density fluctuations, mentioned earlier (see for
example the Millennium simulation in figure 1.3).

In the last decades, analyses of the cosmic microwave background have led to many

11
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Figure 1.1: The cosmic microwave background observed with the Planck satellite

(a) Slices through the SDSS 3- (b)  Slices  through
dimensional map of the distribution of the two-degree-Field
galaxies Galaxy Redshift Survey

Figure 1.2: Large scale structure surveys
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Figure 1.3: A slice through the Millennium simulation
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insights in the physics of the early universe; our universe originated at the Big Bang,
expanded and cooled down. In this process tiny fluctuations were generated that have
led to the large-scale structure we observe today. Although the formation of this cosmic
web is a nonlinear process, in principle these structures still contain information about
the early universe. Hence, a detailed analysis of the cosmic web may give us clues about
the physics just after the Big Bang. In this thesis, we try to recover this information by
estimating the number density of clusters and the length of filaments, as a function of
the initial fluctuations in the cosmic microwave background. This may in the end tell
us about the current universe as well as about its beginning.

In this initial investigation we use the Zel’dovich approximation to model large-scale
structure formation. The Zel’dovich approximation is a linear Lagrangian fluid dynami-
cal approximation proposed in 1970 by Zel’dovich [72]. It assumes that the fluid elements
move in straight lines with directions and velocities determined at the initial time and
do not feel the gravitational force of its environment at later points in time. This ap-
proximation of nature is adequate up to the mildly non-linear regime, when clusters
and filaments start to form. During the further evolution of clusters and filaments it
however becomes invalid, since in nature matter is supposed to turn around and stick
to a filament or cluster.

It furthermore predicts the location and time at which filaments or clusters starts to
form. Structures are supposed to form in regions where matter flows pass through each
other, resulting in so-called caustics. This process is completely analogous to the creation
of caustics in optical systems and can be analyzed and classified by Lagrangian catastro-
phe theory developed by Vladimir Arnol’d. In 1982 Arnol’d, Shandarin and Zel’dovich
[6] found conditions on the initial gravitational field for the formation of caustics.

In this thesis we combine these caustics conditions with geometric statistics of the
initial density perturbations modeled by Gaussian random fields. Geometric statistics
of stationary random processes were first investigated in 1936 by Stephen Rice. He
analyzed level crossings of noise in communication devices. Here we use an extended
analysis in which time is replaced by R?, or R?, and the random process is called a Gaus-
sian random field. Under certain conditions we can ensure the field to be smooth and
calculate number densities of point statistics and average lengths of level sets. In this
way we calculate statistics of the caustics predicted by the Zel’dovich approximation.

Although the Zel’dovich approximation can serve as a first investigation of the role
of caustics in large-scale structure formation, it has its limitations in collapsed regions.
In this thesis we determine the role of caustics in Fulerian and Lagrangian effective field
theory. This new perturbation scheme in the study of large-scale structure formation is
an approach commonly used in high energy physics. We model the small scale physics
as an imperfect fluid, and in this way include the influence of the small scale on the
large scale, reaching more accurate results than obtained through standard perturbation
theory.

The research that has led to this thesis has been supervised by professor Rien van
der Weygaert (cosmology), professor Aernout van Enter (statistical mechanics) and dr.
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Diederik Roest (string cosmology). This thesis has a clear astronomical, mathematical
and physical component.

e In chapters 2, 3, 4, 5, 6, 9, and 14 we discuss the process of large scale structure
formation and the creation of caustics in the Zel’dovich approximation. Numeri-
cally determined statistics are presented in chapter 14. These chapters are mainly
on the topic of astronomy.

e In chapters 7, 8, 10, 11, 12, and 13 we formally discuss catastrophe theory, Gaussian
random field theory, and geometric statistics on them. We furthermore present an-
alytic statistics of caustics in Gaussian random fields. These chapters are primarily
mathematical.

e Finally, in chapters 15, 16, 17, 18, and 19 we discuss the application of effective
field theory to the study of large scale structure and, in specific, caustics. These
chapters are mostly about physics.

This division of the chapters is far from absolute, as is the division between the sciences.
The chapters should be seen as a unit: the mathematical and physical chapters are in-
tertwined with the astronomy chapters. Combined, they tell the story of my exploration
of the role and use of caustics in the study of the cosmic web.
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Chapter 2

Cosmology

Cosmology is one of the oldest branches of science. For centuries, mankind has been
trying to understand the origin, nature and eventually the end of our universe. For
a long time, cosmology remained in the realm of religion and philosophy. However, in
1916, Albert Einstein changed this for good by publishing his theory of general relativity
[25]. General relativity became the framework in which precise cosmological predictions
could be made, making cosmology a physical discipline.

According to Einstein, space and time are dynamical quantities. According to the
work of Alexander Friedmann in 1922, this also made the universe itself dynamic [28].
The universe could be expanding or contracting, originating, and even ending at some
definite time. The dynamics of large scales satisfies the so called Friedmann equations.
However, the scientific community was not yet ready for a dynamical universe when
general relativity appeared. Einstein introduced a cosmological constant to stabilize his
universe and remove the dynamics. In 1929, Edwin Hubble published a paper in which
he presented observations of the redshift of several stars as function of their distance
[36]. This indicated a systematic velocity of galaxies moving away from us. The Ro-
man Catholic priest Georges Lemaitre had already two years earlier interpreted such a
distance-redshift relation as proof of the expansion of the universe [41]. After some years
FEinstein removed his cosmological constant and declared it to be his greatest blunder.
This became the starting point of a physical debate about the evolution of the universe.
Is the universe a stable object which has always existed, or did it have a beginning and
would it someday even end?

The debate about the evolution of the universe was finally decided in 1965 by ac-
cidental observations of the two radio astronomers Arno Penzias and Robert Wilson
[52]. George Gamow studied dynamic universes under Friedmann in the years before his
death. Gamow continued his scientific career by studying tunneling in alpha- and beta-
decay. In 1948 he revisited his study of the universe with Ralph Alpher by analyzing
the matter content produced during the early universe. This lead to the a-3-vy-paper [3]
describing the production of the light elements in the universe. Shortly afterwards Ralph
Alpher and Robert Herman predicted an afterglow of a hot early epoch of the universe
currently present as a black body spectrum with a temperature of T = 5K [2]. This

17
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work remained ignored for many years. Around 1964, Penzias and Wilson had started
the construction of a radio telescope to perform satellite communication experiments.
During these observations they observed an excess noise of about 3 Kelvin, which they
could not remove or account for. After a telephone call with professor Robert Dicke
at Princeton University, the noise was found to be a remnant of an early hot phase of
the universe, for which Robert Dicke was looking. Penzias, Wilson and Dicke wrote two
separate papers describing the observation [69] and explanation [22]. This remnant is
nowadays called the Cosmic Microwave Background radiation (CMB). This discovery
led to a Nobel prize in physics for Penzias and Wilson in 1974.

From these early observations of the CMB, the astronomical community concluded
that the CMB contains a vast amount of information about our Universe. Many more
detailed observations of the CMB followed. The most recent measurements were made
with the European Space Agency (ESA) Planck satellite. Extensive measurements of
the CMB have unleashed a revolution in cosmology. It is the earliest observable image
of our universe and has had a great influence on the development of the Big Bang theory
and structure formation models. In this chapter we give a description of cosmology. We
start with general relativity, derive the Friedman equations and study some cosmological
models. We finish with the concordance model, which is a Friedmann model with good
agreement with observational data. In this chapter we largely follow A short course in
General Relativity’ by James Foster and J. David Nightingale [27] and an 'Introduction
to Cosmology’ by Barbara Ryden [60].

2.1 Einstein field equations

In 1905 Einstein published his famous theory of special relativity. According to special
relativity the speed of light in vacuum is universal and therefore independent of the
velocity of an observer. This is in clear conflict with Newtonian physics, in which
one has to add the observer’s speed to the speed of light. Special relativity therefore
forms a correction to Newton’s dynamics when velocities close to the speed of light are
considered. Special Relativity has so far been in perfect agreement with observations in
which gravity is relatively weak. However, the introduction of these corrections also led
to the inescapable conclusion that space and time, now called spacetime, can be mixed
in a very special way and that the speed of light ¢ is the maximum speed at which
information can travel.

After the triumph of special relativity a new problem appeared. Einstein’s new theory
was in conflict with Newton’s law of gravitation. According to Newton, a change in the
mass of an object and thus in its gravitational field, would instantaneously be effective
throughout space, whereas special relativity predicted a finite speed limit on information.
In order to resolve this issue Einstein proposed his theory of general relativity to replace
Newton’s law of gravitation.

According to general relativity, energy, momentum and pressure densities described
in the energy momentum tensor 7}, (as illustrated in figure 2.1) possess the power to
bend spacetime. To be more precise, the curvature of space-time can be described by
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Figure 2.1: The Stress Energy Tensor

the metric tensor g,,, which defines the distance ds between points via
ds? = Z dz,dx,g"” = dx,dx, g .
n%

This definition should be seen as a generalization of the Pythagorean theorem. Starting
from the metric tensor g, we can compute the Ricci tensor 1, defined as

Ry =T%,, —T%,, + 10, o —T0,T9

po,v uv,o uv— poo

with the Christoffel symbol

1
Fo,uu :i(ga,u,u + Gov,p — g,uz/,a)-
Finally, the Ricci curvature scalar is given by
R =g¢""R,,.
In these equations, we use the shorthand g, , = %f’p“: and use the Einstein summation
convention which states that all dummy indices are summed over.
The bent spacetime in turn influences the movement of objects and therefore in-

fluences the energy distribution. The exact interplay between energy and spacetime is
described by the Einstein field equations

&G

1 .
Ry — iRg;w - CTTHJM with p,v =0,1,2,3,

where G is Newton’s gravitational constant and c is the speed of light in vacuum.

2.2 Friedmann equations

The Einstein field equations form a complicated system of nonlinear differential equa-
tions. These equations are valid for slow moving particles with weak gravitational fields
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as well as physical situations with object approaching the speed of light in strong gravi-
tational fields such as black holes. However, Einstein’s field equations can also model the
evolution of the universe as a whole. Assuming a completely homogeneous and isotropic
universe, nowadays part of the cosmological principle, Alexander Friedmann, in 1922
[28], and later independently Georges Lemaitre, in 1927 [41], derived expressions for
such models of the universe.

The imposed symmetry on space kand time restricts the freedom of the metric g,
considerably. Roberson and Walker proved that the metric in a universe satisfying the
cosmological principle in polar coordinates 7, 8, ¢ must be of the form of the Robertson-
Walker metric

ds® = guats’ = de® — R(t)2 ((1 — krz)_ldr2 + 7r2d6? + 2 sin? 9d¢2) ,

with R(¢) the curvature radius, = = (¢,7,6,¢) the space-time coordinates and k =
—1,0, 1 describing the geometry of the universe, respectively hyperbolic, flat and spher-
ical space. In this expression and the expressions that will follow we chose dimensions
such that the speed of light ¢ = 1. Friedmann furthermore assumed that the universe
is filled with a perfect fluid, free of shear-viscosity, bulk-viscosity or heat-conducting
properties. The energy-momentum tensor of such a fluid is

T,w/ = (P + p)uuuu — P9uv,

with p the density, p the pressure, g, the metric and u, the velocity of the fluid.
Using the differential geometry machinery we can compute the corresponding Christof-
fel symbols. The nonzero components with implied symmetry I't, = I't, are

Y =RR/(1— kr?), 19, = RRr?, % = RRr2sin?6,
iy =kr/(1—kr?), Ty = —r(1—kr?),  Ti3=—r(l—kr?)sin?6,
1
F2 :F?’:]_ F2:_'0 0 F3:
12 13 //ry 33 S v cos v, 23 tom 07

Iy, =I5, = T3 = R/R,

with R = %—If. These Christoffel symbols can be used to compute the Ricci tensor, whose
nonzero components are

Rgo =3R/R,

Ry = — (RR+2R? +2k) /(1 — kr?),

Ry = — (RR + 2R* + 2k)r?,

Rssz = — (RR 4 2R? + 2k)r?sin? 4.

Since all diagonal terms of the Ricci tensor are zero, we are only interested in the trace
of the energy-momentum tensor for the Einstein field equations

T="TYg, = (p+pluyu,g" —4p = p— 3p,




21 2.2. Friedmann equations

since from special relativity we know that u,u,g"” = 1. After substitution of these ex-
pressions in the Einstein field equations we obtain two independent differential equations

3R/R = —4xG(p + 3p)
RR + 2R* — 167G =47G(p — p).

Eliminating R from these equations and writing R in terms of the Hubble parameter H
and the normalized scale parameter a

R(t)
=Ry
R
H =— = -
(*) R a’

with Ry the current curvature, we obtain the Friedmann equations

9 a\> 8nG kc?
=\a) = 3" ma
0

97_47TG +£
a 3 \PT 2 )

The second equation is often combined with the first to obtain the conservation of energy
A a 2
0:p+35(p+Pc ).

In this equation a denotes the scale of the universe, @ = 9% and 4 = e

at Jz 1ts time
derivatives, H is the Hubble parameter known from the Hubble law, p denotes the
sum of the energy densities (composed out of matter, radiation and dark energy), while
k = 0,1 or —1 for a flat, a spherical or a hyperbolic universe respectively. The factor Ry
denotes the current radius of curvature. The factor P in the second equation describes
the pressure in the universe.

In order to completely solve the Friedmann equations, one has to know the nature of
the energy densities making up the energy content curving the universe. The behavior of
energy during the evolution of our universe is encoded in the second Friedmann equation
in combination with the equation of state P = wp. For baryonic and cold dark matter
w is well approximated by 0, while for radiation w = 1/3. For dark energy the factor w
is not well known. It should be smaller then —1/3 in order to generate an accelerated
expanding universe and greater than —1 in order to satisfy causality. Dark energy is
often equivalent to a cosmological constant by which w = —1. The equations of state in
combination with the second Friedmann equation lead to the conclusion that the matter
density in the universe dilutes like =3, while radiation dilutes like 4. The dark energy
content with equation of state parameter w = —1 remains constant during the expansion
of space-time. This is the reason that we may suspect that the cosmological constant is
a property of space-time it self.
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Assuming the presence of a cosmological constant, the Friedmann equations can be
rewritten as
H2 QT,O Qm,O 1- QO

a4 0
Hg at + + a0+ a? ’

a3

with Hubble parameter H, current Hubble parameter Hp, current radiation density
Q0 = pro/peo, current matter density Q0 = pm,0/pe,0, current dark energy density
QA0 = pa0/peo and current energy density Qg = Q.0+ Q0+ 0. The current critical

2
density p.o = % is the energy density necessary to make our universe flat (k = 0).
This form of the Friedmann equations is most convenient in large scale structure for-
mation, since it explicitly describes the evolution of the universe in terms of measurable

cosmological parameters.

2.3 Cosmological toy models

As described above, the energy content and geometry of the universe determine the
large-scale evolution of the universe. Radiation, baryonic matter and dark matter slow
the expansion down whereas the dark energy or cosmological constant accelerate the
expansion. In this section we study some solutions of the Friedman equations describing
the evolution of different models of the universe.

We start with the radiation, matter-dominated (Einstein-de Sitter) and dark-energy
dominated (de Sitter) model after which we describe the concordance model which is
based on the Planck satellite observations.

2.3.1 Radiation-dominated universe

After the big bang, the universe went through a phase in which all particles moved with
velocities close to the speed of light. The particles were relativistic and contributed
to the energy content of the universe in the form of radiation. During this epoch the
evolution of the universe can be modeled by a flat, radiation-only universe. Under these
assumptions the Friedmann equations simplify to

H? a? 1

HZ  HZa®2 ot

This differential equation is equivalent to

and can be solved by

with t¢ the current age of the universe.
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2.3.2 Einstein-de Sitter universe

One of the earliest epochs of our universe can be modeled by a flat radiation-dominated
universe. However since the radiation density evolves as a~* whereas the matter density
evolves as a~2 there exists a time at which the matter density of the universe becomes
more important than the radiation density. At this epoch we model the universe by
a flat-matter-only model. This model is commonly known as the Einstein-de Sitter
universe. In an Einstein-de Sitter universe, the Friedmann equation simplifies to

H? & 1
HZ  Hga®> o

This differential equation is equivalent to

Hy
a = ——
al/?2’

and can be solved by

2.3.3 De Sitter universe

A radiation-dominated phase in which a « t*/2 followed by a matter-dominated phase
in which a o t2/3 was the generally accepted model of cosmology until 1993-1997. How-
ever, in 1998 the High-Z Supernova Search Team led by Brian Schmidt and Adam Reiss
[58] and the Supernova Cosmological Project led by Perlmutter found evidence for an
accelerated expansion [53]. This discovery led to new interest in the cosmological con-
stant or a dark energy component. In the current model of cosmology we think that the
matter-dominated phase is followed by a flat dark-energy-dominated phase, first studied
by Willem de Sitter and often called the de Sitter universe.

In a flat dark-energy-dominated universe with w = —1 (a cosmological constant),
the Friedmann equation simplifies to

H? a?

H  Hia?
This differential equation is equivalent to
a = Hya,
and can be solved by

a(t) = effolt=to)
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2.4 The concordance model

The models above give us insight in the behavior of the Friedmann equations. However,
in reality we live in a universe composed of radiation, dark matter, baryonic matter,
and dark energy. Observations of the cosmic microwave background with the Planck
satellite indicate that our universe is nearly flat and is currently composed for 4.9%
out of baryonic matter, for 26.8% dark matter and for 68.3% dark energy (see figure
2.2a). This model is often called the dark energy, cold dark matter model ACDM. The
universe first went through a radiation-dominated phase in which a o ¢'/2, followed by
a matter-dominated phase in which a x ¢2/3 after which the universe evolved as a de
Sitter universe in which a o e0!. In figure 2.2b we illustrate the expansion history of
different cosmological models. The yellow red illustrates the concordance model. The
universe was born 13.798 + 0.037 billion years ago and will forever keep expanding and
accelerating.

2.4.1 Open problems in cosmology

In the twentieth century and the start of the twenty-first century we have greatly ex-
tended our understanding of the evolution of the universe on the largest scales. The
universe was born 13.798 + 0.037 billion years ago, and expanded to our current uni-
verse. However, there are many remaining questions. For example, what is the source
and nature of dark matter and dark energy? How does the large-scale cosmology in-
fluence the structure in the universe? There are also fine-tuning problems within the
ACDM model. The extreme flatness of our universe and the homogeneity of the CMB
are very special and unlikely circumstances in the concordance model. These problems
are well known as the flatness and horizon problems. One of the proposed explanations
for these problems is formed by a process called inflation. Inflation theory has however
so far not been explained by some fundamental theory.




Chapter 3

Large-Scale Structure Formation

In chapter 2 we described homogeneous and isotropic solutions of the Einstein field equa-
tions. These models of the universe are completely specified by the scale factor a which
is a function of time. The universe as we observe it today, contains a lot more structure.
The solar system is far from homogeneous or isotropic. The cosmological principle is a
good approximation only at scales substantially larger than 100 Mpc. On smaller scales
several surveys, including the Sloan Digital Sky Survey (SDSS), have detected an intri-
cate weblike structure composed out of galaxies. This structure is commonly called the
large-scale structure (LSS) of the universe or the comic web. It originated from small
fluctuations which are still observable as small temperature fluctuations in the cosmic
microwave background radiation field.

In this chapter we describe the evolution of small density fluctuations upon a homo-
geneous and isotropic Friedmann universe. In principle this should be done in a general
relativistic setting. We will here however only consider the Newtonian limit. We start
with the Boltzmann equation and derive the differential equations governing the evolu-
tion. We subsequently study Lagrangian approximations. We in particular concentrate
on the linear Lagrangian approximation, i.e. Zel’dovich Approximation (ZA) proposed
in 1970 by Zel’dovich [72]. In the last part of this thesis, we use these equations to build
an effective field theory of large-scale structure formation.

3.1 The Boltzmann equation

The concordance model, described in the previous chapter, consists of radiation, mat-
ter (dark and baryonic) and dark energy. The formation of the large-scale structure
has taken place in the matter and dark energy dominated eras. For this reason we
will neglect the influence of radiation on structure formation. Although the nature of
baryonic matter and dark matter differ greatly, i.e. baryonic matter couples to the
electro-magnetic field whereas dark matter does not, we will not distinguish between
the two in our models. We do not know the precise properties of dark matter. We
however do know that there is approximately five times more dark matter than baryonic
matter and that both forms of matter couple to gravity. For this reason we will assume

25
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that matter in general is fundamentally described by a collection of identical collisionless
classical non-relativistic particles interacting only via gravity.

The evolution of fluctuations in the matter density evolves via the collisionless Boltz-
mann equation. We follow the analysis of Carrasco et al [16] and Bernardeau et al
[10]. For a collisionless system it is not useful to follow the orbits of each individ-
ual particle. Instead we can consider the distribution function f which is defined such
that f(x,p,t)dxdp is the probability to find chosen particle in the phase-space interval
[x,x + dx] x [p,p + dp] at time t. By definition, the distribution function of a system
with N particles is normalized such that

/f(x, p,t)dxdp =N Vt.
For a classical point particle,
Fxp.t) = 8D (x = x1)0 @ (p — mvy),

with v; velocity and x; of particle one and 6(¥) the Dirac delta function in d dimensions.
In an N-particle system the total phase space density f is

N
X p;1 an X p,t) = Zé(d)(x - Xn)(s(d)(p — mvn),

with x,, and v,, the position and velocity of the n'" particle and x and p denoting of
the position and momentum of all particles simultaneously.

Any given particle moves through phase-space, by which the probability of finding the
particle at any given phase-space location f evolves with time. As f evolves, the proba-
bility must be conserved at all times, i.e. we do not allow for the creation or destruction
(annihilation) of dark matter particles. This can formally be expressed in terms of the
Boltzmann equation. Differentiating the distribution function with respect to time gives
the Boltzmann equation

S v =Tk L Y

P ot 0x op’

For Hamiltonian systems we can use Hamilton’s equations to rewrite the Boltzmann
equation in the form

df _of  of oH 9f oH

=24 22 = L 7
dt ~ ot  ox Op 8p ox '

The total derivative on the left hand side describes the collisions between particles. It

is for this reason often denoted as

df _df
dt  dt

coll
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The partial derivatives on the right hand side describe the evolution of the particles
without interactions. When the interactions between the particles do not significantly
influence the momenta of the individual particles, we can consider the collisionless limit.
The corresponding Boltzmann equation is the collisionless Boltzmann equation

of L of OH 9f 0H

“ot Tox op op ox’

0:

ECO

In this thesis we will assume collisionless dark matter, described by the collisionless
Boltzmann equation. We for this reason always assume

df

U =0.

coll

There however exist more involved theories of dark matter in which the collisional term
should be taken into account.

The distribution function of a single particle f1 in a gravitational field evolves according
to the Boltzmann equation

0— Ofi P 9Of1 0P Of1
+=-—=—-m —

ot ' m Ox ox Op’

m#1
where m is the mass of the particle and ®,, is the single particle Newtonian potential
G

3, - Cm_
|x — xp,|

By assuming that all particles have the same mass and by summing over the N particles
in our N-body problem, we obtain the Boltzmann equation for the total phase space
density f,

of , p Of 3 OPm  Ofn

O=r T ax ™ ox  op

n,m;m#n

By solving the Boltzmann equation, we can in principle fully understand the formation
of large-scale structure. Physical observables such as the mass density p, momentum
density m, velocity field u, and kinetic tensor ¢ can be obtained by taking moments with
respect to the phase space density,

p(x,1) m/fxpdp meS X — Xp),
m(x,t) = p(x, t)u'(x,1) :/pif(x, p)dp = mZU%é(d)(x — Xp),

aij(x,t):/ p'p’ f(x,p)dp = mZv 06 (x — xy,).
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This task is however extremely difficult, since the Boltzmann equation is a 6 N-dimensional
non-linear differential equation. We can instead consider lower dimensional approxima-
tions. Assume that matter behaves as a so-called dark matter fluid. By integrating the
collisionless Boltzmann equation with respect to momentum we obtain the conservation
of mass

% +V - (pu) =0.
By multiplying the collisionless Boltzmann equation with p’ and again integrating over
all momenta, we obtain the Euler equation

ou +(u-Viu=-Vo — lv. (po?) = —Vd — tvp.

ot p p
These equations are known as the Jeans equations and will be used in the subsequent
chapters. Note that we can also derive the conservation of energy from the collisionless
Boltzmann equation, by multiplying with % and integrating over all momenta. The
collection of the conservation of mass, conservation of energy and Euler equation without
a gravitational potential are called the fluid equations. This system of equations is
closely related to the Navier-Stokes equation which is one of the unsolved millennium
problems. The deep connection between the large-scale structure formation and the
Navier-Stokes equations underlines the complexity of large-scale structure formation.
Large-scale structure formation is just a special application of fluid dynamics.

3.2 Evolution of matter density fluctuations

In the previous section we derived the fluid equations from the collisionless Boltzmann
equations. By adding the Poisson equation we close the system of differential equations.
The conservation of mass, Euler and Poisson equation in there most familiar form are

@
ot
ou 1
. *Vrp = - rq)_* r-Pa
8t+(u V.)u \Y pV

+V, - pu=0,

V2% = 47Gp,

with density p, velocity u, pressure P, and gravitational potential ® at some position r
and time ¢.

The spatial coordinate r denotes a physical position. This includes the expansion
of the homogeneous background universe. We can write the fluid equations above as
deviations with respect to the homogeneous expanding universe by introducing comoving
coordinates
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Note that in a completely homogeneous universe, the physical position r evolves whereas
the comoving position x is constant. Analogously, the density p can be written in terms
of density fluctuations § with respect to the background (average) density p, by

p(X, t) B pu(t)
pult)

The gravitational potential can be written in terms of the potential perturbations, sub-
tracting the potential term describing the homogeneous expansion

i(x,t) =

b(x,1) = B(r, 1) — %adﬁ

The velocity v can be expressed in terms of peculiar velocity defined as the derivative
of the comoving coordinate,

dz : :
g — = X = — axX.
v=ag =a u—a
Substituting the comoving variables, results in the comoving fluid equations
a5 1
— 4+ -V,-(14+dv=0
T + avm (146)v=0,
ov 1 a 1 1
— 4+ —(v-V —v=—-Vp¢6— —F—=V,P
8t+a(v g;)v—i—av a «¢ apu(L+9) 7

V24 = 4rGa’p,d = gQHQ(IQ(S.

Note that in a medium with vanishing pressure gradient, i.e. V,P = 0, and a gradient
field velocity field, with velocity potential V such that v = —ng, the Euler equation
can be transformed to the Bernoulli equation

% 1

o "2 VY=o

This allows for an elegant treatment of approximations of the comoving fluid equations.

3.3 Linear Eulerian perturbation theory

The comoving fluid equations described above have two nonlinear terms. The V - (0v)
term in the conservation of mass and the (v - V)v term in the Euler equation. Under
the assumptions

k1

vt 2
exp 5
( ; ) <3,

and
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with d the coherence length for spatial variations of §, v the characteristic fluid velocity
and ey, the expansion time (Gp,)~'/2, we assume that the terms V, - (6v), (v - V)v
and the pressure gradient are negligible we obtain the linear approximation

5+ }V -v=0
a
vriv—_lyg
a a
V2¢ = 4nGpya®s.

Taking the divergence of the Euler equation, combining it with the Poisson equation and
substituting the continuity equation in this equation, we obtain the differential equation

6+ 295 = 4w Gp,0.
a
In a matter-dominated homogeneous Friedmann universe (with 6 oc a=3), the Friedmann

equations state that

47Gp, = ;QH2 =

3

2

Substituting this equation in the differential equation governing the evolution of § leads
to

4 3
d+2-6 = —QuH?6.
+ a 9q3° 0770

In general, this equation can be solved in terms of a growing mode Dy and a decaying
mode D_ as

6(x,t) = Dy (t)As(x) + D (t) A—(x),

in which Dy and D_ describe the evolution of § in time, while Ay and A_ describe
the behavior of § in space. If we neglecting the decaying mode D_, we obtain the
approximation

6(x,t) = Dy (t) Ay (x),

with the growing mode D, explicitly depending on the background cosmology. For
universes with matter and dark energy, or a cosmological constant, the growing mode
can be solved as

D=0 [ ol

In an Einstein-de Sitter universe, the growing mode equals the scale factor, i.e. D (t) =
a(t). When the dark energy becomes dominant, growing mode tends to become constant.




31 3.4. Lagrangian perturbation

3.4 Lagrangian perturbation

Among fluid dynamical perturbation theories, we can distinguish Eulerian and La-
grangian approaches. In the previous section we saw the Eulerian approach, in which
we expand in the density. We analyze the flow of mass into and out of a fixed volume
element. In the Lagrangian approach, we expand in the displacement field of volume
elements. We define a Lagrangian volume element which follow the fluid in time. The
mass in such a Lagrangian volume element remains constant, while the shape and vol-
ume of the Lagrangian volume element can change dramatically. The density at some
time can be computed by dividing the mass in the Lagrangian volume element by its
volume at that time.

If no approximations would be made in the process, the Eulerian and Lagrangian
approach would give the same solution. In practice the comoving fluid equations have
the same level of complexity as the Navier-Stokes equations, by which we have to make
approximations and get a branch of Eulerian and Lagrangian approximations. The
Lagrangian approach turns out to form a better approximation of non-linear structure
formation than the Eulerian approach. In this section we study Lagrangian perturbation
theory and show why the Lagrangian approach can be expected to give better results
than the Eulerian approach.

3.4.1 Lagrangian comoving fluid equations

We apply the comoving fluid equations to the Lagrangian approach. A Lagrangian
solution of the fluid equations described above is a map R? x R — R3, (q,t) — x(q, )
mapping an (Lagrangian) initial position q to an (Eulerian) position x(q, t) evolved over
some time ¢t. Let s(q,t) = x(q,t) — q be the displacement field, corresponding to this
map.

The conservation of mass has a natural place in the Lagrangian approach. Neglecting
the initial density fluctuations, the density in Lagrangian space q is equal to the average
cosmic density p,(f) at time ¢, by which the mass contained in each initial Lagrangian
volume element coincide. At later times, the conservation of mass implies that the mass
in each fluid element remains constant,

p(x, t)dx = py(t)dq.

The transformation of q to x can be seen as a coordinate transformation. Using the

Jacobian || ||, the density perturbation in the Lagrangian approach can be written as
pix,t) ox| " [[ota+s)|
1+6(x,t) = == =
pu(t)  |0q dq

In one spatial dimension, the displacement vector consists of one component

s = (s1).
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The Jacobian can be expressed in terms of ds/0q as,

In two spatial dimensions, the displacement field consists of two components

ox
dq

951
oq1’

The Jacobian can be written as
’ g (381+882> N (681082081582)

o1 0go Oq1 02 9q2 O
In three spatial dimensions, the displacement field consists of three components

ox
dq

S1

The Jacobian can be written as

'3X (3&+852+353>+<581882+551883+852383>
dq O Ogq2 g3 O0q1 0ga  Oq1 Oqz ~ Oq2 D3

_<381882+881083+382883>
0q2 0q1 ~ 9q3 0q1 ~ Og3 Iqo
(881082883 051 053 Os3 081082883)

0q1 0q2 0q3 ~ 0q2 0q3 Oq1  Oq3 Oq1 g2
_ (851382383 | 051052055 | 05105 883)

0q3 0q2 0q1 ~ 0q1 0q3 Oq2 ~ Dq2 Oq1 Og3

Up to linear terms of ds/0q, in any number of spatial dimensions, this reduces to

ox
=14V, s,
‘ 0q !
with the reciprocal up to linear order
ox ||}
1+6=|=— =1-V, s,
i ’ dq !

since (1+V,-s)(1 -V, s) =1—(V,-s)? = 1. Hence we can approximate the density
perturbation ¢ up to linear order in ds/9q by

d(x,t) = =V, -s.




33 3.5. Zel’dovich approximation

This approximation will be important in the Zel’dovich approximation, since it does not
contain products of elements of ds/0q which represent interactions or phase mixing.
Substitution of this identity in the comoving Poisson equation results in

V3¢ = —47rGa2pqu - 8.

The comoving Euler equation becomes more complex in the Lagrangian approach. Let
7:R — R be a (strictly increasing) continuous function. This function can be seen as a
parametrization of time t. Let u = 0z/07 be the velocity field with respect to 7. Note
that by the chain rule we can relate v to u via v = a7u. The position x of a particle
originating in q can be related to the reparametrized velocity u via

(1)
x—q—i—s—q—i—/ u dr.
0

The Euler equation comes in by taking the Lagrangian derivative of u with respect to
T’

du Ou 1 1
— == -Vy)u= —(Bu—-Vyp— ——V,P
dr  or (u-Va)u a7"( U= Vaé (1-1—5)puv )
with B = —(2aa7 + a?7) = —%(a%"). The left hand side describes the acceleration of

the Lagrangian volume element with respect to 7, while the right hand side describes
the force exerted on the Lagrangian volume element.

3.5 Zel'dovich approximation

The fluid equations in the Lagrangian setting enable us to make a first-order Lagrangian
approximation of the solutions of the fluid equations. This approximation was derived
in 1970 by Zel’dovich [72] and is commonly denoted as the Zel’dovich approximation.

Theorem 1. For a universe in which the following assumptions are satisfied:

e the velocity u with respect to the growing mode T = Dy has almost everywhere' a
nonvanishing divergence, i.e. V, - u # 0 almost everywhere,

e the density is approximated by the divergence of the displacement vector, i.e. 6 =
_vq - 8,

e the gradient of the pressure is vanishing, i.e. VP =0,
the evolution of the density perturbations is governed by the Zeldovich approrimation
x(q,t) = ¢+ Dy (t)u.

Furthermore w is a constant gradient field. We define the velocity potential Vo such that
u = —Vq\I/().

'The set {q € R*|V - u(q) = 0} has Lebesgue measure zero.
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Proof. With a vanishing pressure gradient, the Euler equation in the Lagrangian setting
is given by
du Ou 1
Pl (u-Vz)u
The existence of a 7 such that V,¢ = Bu, would prove that u is a gradient field. We
will show that the growing mode D, satisfies this condition. For such a 7, the FEuler
equation reduces to

(Bu—V30).

art

du OJu
E—E—l—(uvx)u—o

by which

7(t)
s = / udr = (7(t) — 7(0))u = 7(t)u,
7(0)

if we set 7(0) = 0. Substituting V¢ = Bu in the Poisson equation
V?Cqb = —477Ga2puvq -sA —47TGa2puVm - 8,
results in
—BV, -u= —47rGa2puTVx - u.

Note that according to the chain rule, up to linear terms in 0x/dq the gradient V,-s =
V4 -s. Now since we assume that V, - u # 0 almost everywhere, this equation can be
reduced to

B = 2aa7 + a*7 = 4nGa’p,,

leading to the differential equation
. a.
T4+ 2—7 = 47Gp,T.
a

This second order differential equation is identical to the differential equation of the
growing and decaying modes D almost everywhere. Neglecting the decaying mode
results in the Zel’dovich approximation

x:q+D+u:q—D+Vx\IJ

with Dy the growing mode described in the previous section and ¥ the velocity potential
of —u. Since in the Zel’dovich approximation the field u is constant along the flow, we
can see that ¥ is constant, i.e. ¥ = W for some scalar field V.

The Zel’dovich approximation is an extremely simple approximation of gravity in
the sense that it only depends on the growing mode D, containing the information
of the cosmology and a scalar field W containing the information of the initial density
fluctuations of the universe. This thesis is largely devoted to understanding the statistics
of the geometry of Wy. In the description below, we show that the initial velocity
potential ¥y is proportional to the initial gravitational potential. ]
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In chapter 18 we will see a more direct prove of this theorem.
This approximation can be related to physical quantities via the peculiar velocity?

dx .
vV = aa = —aD, V¥
aD+
=—aD_ H g
a + aD+V
=—aD Hf()V

with f the Peebles factor. In a 1980 Peebles found a approximate power law
f(Q) = Q7
with v = 0.55 4+ 0.05[1 + w(z = 0)], and w(z = 0) the current equation of state of dark

energy [51]. In the linear regime furthermore

2f(Q) Vo

30H «a

by which

2

V()=
(@) = 35 270

o(x,t).

Combining this with the relation between d and ¢ we see that in terms of Fourier modes,
X koo

The density of the Zel’dovich approximation is given by

= ||5mn ¢mn\| !
1

~ (1= D (M)A — Dy (H)A2) (1 — Dy (t)As)
with A1 > Ao > A3 the ordered eigenvalues of the deformation matrix
Dy 9?0, B 2 AV
a 0¢n0q,  3a3QH? 0¢10q,

1+46

@Z)mn =

In figure 3.1 the Zel’dovich approximation is depicted. The initial conditions are sim-
ulated by a realization of a Gaussian random field with power spectrum P(k) = Ak~!
with some constant A. The Zel’dovich approximation describes a linear ballistic motion
of fluid elements, which do not interact with each other. The solution is appropriate as
long as fluid elements have not crossed. At the time of crossing, infinite densities occur
(with zero measure). This phenomenon is called shell crossing and forms the starting
point of they story of catastrophe theory in large-scale structure formation.

2The velocity of stars with respect to the expanding background.
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Figure 3.1: The Zeldovich approximation of the smoothened density fluctuations with
o = 1 corresponding with a power law power spectrum with n = —1, —2.
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3.5.1 Truncated Zel'dovich approximation

In 1970 [72], Zel’dovich proposed the linear Lagrangian approximation for large-scale
structure formation, today well-known as the Zel’dovich approximation. In 1973 [73]
Zel’dovich argued that this approximation was only valid for universes in which large-
scale wavelength perturbations dominated over small-scale perturbations. Such universes
are sometimes denoted as the adiabatic or pancake model. In the 1980s, work indicated
that the Zel’dovich might be adequate in a more general setting (see for example Melott
et al. [47]). In 1993, Coles et al. [21] performed numerical simulations and compared
them with analytical models. They furthermore performed truncations on the initial
conditions, by removing the high Fourier modes of the initial conditions. The Zel’dovich
approximation with truncation turned out to be the best analytic model of large-scale
structure formation they considered. In 1994, Melott et al. [48] found that the Zel’dovich
approximation with a truncation can be improved by performing a Gaussian smoothing
on the initial conditions. Such a smoothing can be seen as a more subtle truncation
since is suppresses certain Fourier modes of the initial conditions instead of removing
them. This model is known as the truncated Zel’dovich approximation. In the sub-
sequent chapters we will always denote the truncated Zel’dovich approximation as the
Zel’dovich approximation.

N-body simulations of large-scale structure formation show that the evolution of short-
wavelength fluctuations is strongly influenced by long-wavelength fluctuations, whereas
long-wavelength fluctuations are not significantly influenced by small-wavelength fluc-
tuations, see Little, Weinberg and Park [42]. Now consider a model in which structure
formation evolves hierarchically. In such models the first structures to form have a short
wavelength. They are gradually followed by structures with longer wavelengths. The
Zel’dovich approximation is valid up to the mildly nonlinear stage. In a hierarchically
evolving universe, the Zel’dovich approximation will become invalid on short wavelengths
before the long-wavelength structures have formed. Since the long-wavelength structures
are not significantly influenced by short-wavelength structures, we can still probe the
long-wavelength structures in the large-scale structure by removing the short-wavelength
fluctuations with a Gaussian smoothing. For different stages of evolution, different scales
of structure are formed by which we need a different smoothing scale. This is the trun-
cated Zel’dovich approximation which is used throughout this thesis.

When we consider truncated random fields, we can see the truncation scale as an
extra parameter of the field. In the case with two spatial dimensions (with coordinates
(z,y)), the truncated random fields can be seen as a three dimensional field (with co-
ordinates (x,y,0)), with o the smoothing scale. This truncated space is often denoted
as scale-space. Analogously, the truncated Zel’dovich approximation in three spatial
dimensions (z,y, z) can be seen as a four dimensional field (x,y, z,0) in scale-space. All
results obtained in the subsequent chapters will be based on the truncated Zel’dovich
approximation and are considered in scale-space.
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3.5.2 Adhesion model

As discussed in the previous section, the Zel’dovich approximation is a good approxima-
tion of the linear and mildly non-linear regime of structure formation. In the strongly
non-linear regime the approximation becomes invalid, since the particles do not interact
and moves straight through each other. This feature of the Zel’dovich approximation
is due to the assumption that the fluid is pressureless, and that we approximate the
density as 6 = —V - s in which we ignore gravitational interactions. Many modifications
have been proposed to fix these shortcomings. Matarrese et al. [45] developed a variant
called the ’frozen flow approximation’ in which the peculiar velocity field is fixed at its
original value. Brainerd, Scherrer and Villumsen [13] developed an approximation which
assumed a constant gravitational potential. For a more complete discussion see Jones
[38]. The adhesion model modifies the Zel’dovich approximation by adding a artificial
viscosity term to mimic the gravitational interactions occurring after shell crossing. This
results in the a Euler equation in the Lagrangian setting of the form

du  Ou o2
ﬁ—aDJr—i—(u-V)u—uV u.

We consider solutions of this equation and take the limit ¥ — 0, by which the viscosity
term does not affect the Zel’dovich approximation before shell crossing but makes it
sticky at shell crossing. This equation is known as Burgers’ equation.

The Burgers’ equation was first introduced in 1940 by the Dutch mathematician
Johannes Marinus Burgers to model turbulence. The equation was introduced in the
context of large-scale structure formation in 1984 by Gurbatov, Saichev and Shandarin
[32] and was discussed extensively by Soviet astrophysicists.

One of the interesting features of the adhesion model is that it can be solved analyt-
ically. In the limit v — 0

X—q,. Sa . Sa
u(x,t) = Z Df Ja €XP <—2y> /Zja exp <—2y>

«

with q, the Lagrangian points minimizing the action

(X B qa)2
2D, '

Ja = [det ((LJ + aQian‘>:|

as a function of q for fixed x. The process of minimizing the action results in q,, such
that

Sa = ‘llo(qa) =+

)
q4=q,

X(qoﬂ D+) =4dq, + D—i-vqllj()(qa)
S(X, D+,q) > S(X, D+7qo¢)
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Zeldovich Adhesion

Figure 3.2: The adhesion model and the Zel’dovich approximation by Johan Hidding
[34]. The left and right panel depicts the Zel’dovich approximation and adhesion model
of an initial density field.

for all q. This can be interpreted by saying that the solution of Burgers’ equation is
equal to the Zel’dovich approximation before shell crossing and sticks to a structure
(with zero measure) after shell crossing. In figure 3.2 we can observe the evolution of
particles in the adhesion model. The initial conditions were generated form a Gaussian
random field with a power-law power spectrum. See the movie by Johan Hidding [35]
for an excellent illustration of the adhesion model.
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Chapter 4

Caustics in N-Body Simulations

In chapter 3 we studied the equations governing Newtonian large-scale structure for-
mation. We furthermore derived the Zel’dovich approximation. In this approximation
regions with infinite density, often called caustics, can be generated in a process called
shell crossing. In this chapter we use numerical simulations of one- and two-dimensional
models of the universe to investigate the significance of these caustics in the real universe.

4.1 Simulation of dark matter

With the increase of computer power in last decades, numerical simulation of the comov-
ing fluid equations has grown into a extensive field of research. In 2005, the Millennium
run simulated a cube with sides of about 2 billion light years containing about 20 million
galaxies. In 2010, the Bolshoi simulation and in 2014 the Illustrus simulation performed
similar cosmological three-dimensional N-body simulations containing besides the co-
moving fluid equations, gas dynamics and some star evolution (supernova explosions).
In this thesis we restrict our self to small simple one- and two-dimensional N-body simu-
lations. The features appearing in these simple simulations help us understand the more
involved three-dimensional simulations. In this section we describe the principles used
in the simulation. Appendix A contains the N-body routine used in this chapter.

4.1.1 Leap-Frog integrator

The numerical integration of the comoving fluid equations in this thesis has been per-
formed with the Leap-Frog integrator. The fluid is approximated by a grid of 'particles’.
Consider n? particles labeled by i € (Z/nZ)¢ with d the number of spatial dimensions
of the simulation. The particles are initially positioned on a cubic grid. The initial
positions and momenta are
L
Xj0 =—1i, i0=20,
170 n pl,o

with L the length of the sides of the box. The Leap-Frog integrator starts with a
displacement according to the Zel’dovich approximation followed by iterations over so-
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called drifts and kicks. The positions and momenta of the particles are not evaluated
at the same time steps, i.e., the positions are evaluated at times t = ida whereas the
momenta are evaluated at times ¢ = (i + %)da for ¢ € N. The positions overtake the
momentum after which the momenta overtakes the positions in time. This property gives
the Leap-Frog integration its name. The integrator is often used since it is reversible in
time and enforces conservation of energy on the solutions.

4.1.2 The Zel'dovich approximation

The initial fluctuations in the matter density are modeled with a realization of a Gaus-
sian random field 6 € (R™)?. The initial displacement of the particles is performed
according to the Zel’dovich approximation. The velocity potential is computed with
discrete Fourier transforms

1

o =F"! <k2}“(6)> :

with F and F~! respectively the Fourier and the inverse Fourier transform. The velocity
u; a computed with a discrete gradient of the potential. We displace the positions by a
time step da and the momenta by a time step %da resulting in new position and velocity

Xi,1 =Xi,0 + dau; Pi3/2 = idaui.

4.1.3 The drift

The drift approximates the differential equation

ox p 0x P

== = —
ot a2 Oda  a?a

and results in the displacement

a
Xit+1 = Xit + %pi,t+1/2a

with @ given by the Friedmann equations

a= Hoa\/QA + Qa3+ (1—Qp — Qa2

4.1.4 The kick

The kick approximates the differential equation

op_ op_ Vo
ot - VT 9 T T
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We start with a mass deposition of the positions on a regular grid using a Cloud in
Cell algorithm C'IC, described below. Using the mass deposition, we approximate the
gravitational potential

d =CIC[xim —1

3 1
b :iﬁmHg}“‘l <kQF(5)> :

We subsequently compute a discrete gradient of the potential and interpolate the poten-
tial on the positions of the particles a... This results in the kick

da
Pit+3/2 = Pigt+1/2 — Eacc-

4.1.5 Mass deposition

For the mass deposition we us a Cloud in Cell algorithm. In this algorithm we consider
a cubic grid consisting out of (2n)? points. Each particle Xj¢ resembles a cube, the
cloud, with side length % The mass deposition distributes the mass of the particles
on the cubic grid according to volume of the cube laying in the corresponding grid cell.
This algorithm forms an approximation of the density distribution as a function of the
position of the particles.

4.2 Caustics in one-dimensional simulations

In figure 4.1 we simulated the evolution of a fluctuation in a one-dimensional universe.
We start with a uniform density distribution and a velocity fluctuation of the form

v =zxe

This can be seen in the upper phase-space plot. The particles are uniformly distributed
in space and have some initial velocity. The particles on the left side move to the right
whereas the particles on the right move to left side of the simulation. The curve in
phase-space is called the Lagrangian submanifold. In the upper right plot of figure 4.1
we see the density. The boxes are a histogram of the particles with respect to the spatial
dimension. This corresponds to the Eulerian density. The black line is the reciprocal
of the separation of neighboring points. This corresponds to the Lagrangian density.
When time evolves, the particles start to move. In the middle panel, we see that some
particles coming from the left collide with particles coming form the right side of the
simulation. This is called shell crossing. At this time the Eulerian density becomes large
while the Lagrangian density becomes infinite. The particles do not really collide since
we simulated a pressurless fluid. In the lower panel of figure 4.1 we see a further stage of
evolution. After shell crossing the particles have continued to move, and decelerated due
to the density peak in the middle of the simulation. Some particles have even turned
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around and generated a second density peak. In the simulation, the Lagrangian sub-
manifold will keep winding till the separation of the particles reaches the accuracy of
the simulation.

From the simulation described above, we observe points in space corresponding to one
unique point on the Lagrangian submanifold. These points form single stream regions.
Other points in space correspond to multiple points on the Lagrangian submanifold.
These points form the multi stream regions. The different stream regions are separated
by points with an infinite Lagrangian density. These points are called caustics. From
this simulation we observe the prominent role of the caustics in large-scale structure for-
mation. They correspond to the high density regions and highlight regions with enough
mass to form gravitationally bound objects. In more realistic N-body simulations, the
dark matter distribution will evolve as depicted in our simulation. The baryonic matter
will however experiences pressure and will shock at the time of first shell crossing. The
caustic corresponding to this event indicates a collapse which can potentially lead to the
formation of stars and galaxies.

4.3 Caustics in two-dimensional simulations

In figures 4.2 we see the evolution of density fluctuations with a power spectrum with
index —%. The time evolution has been performed with the same Leap-Frog integrator
as the one-dimensional simulation described above, with a implementation of Johan
Hidding [33]. Initially the perturbations are small. In time the over dense regions exert
a stronger pull on the surrounding matter than under dense regions. The over densities
become clusters and filaments whereas the under dense regions become voids.

In the context of the corresponding four-dimensional phase-space, the evolution can
be seen as the stretching and twisting of a two-dimensional Lagrangian submanifold.
Initially, there are only single stream regions. Each point in space corresponded to a
unique point on the Lagrangian submanifold. As the submanifold however evolved, shell
crossing and multi stream regions appeared. This again induces infinite Lagrangian
densities and caustics. In filaments and in particular clusters, many shell crossings will
have occurred with many flows. We for this reason see that the caustics closely follow
the cosmic web. In this thesis, we approximate the density of nodes and length of the
line caustics.

The N-body simulation is again a good representation of the evolution of dark matter
in a two-dimensional universe. The baryonic matter will again have collapsed during first
shell crossing. Since starts are composed out of baryonic matter, we can expect stars
and galaxies to form in the nodes and middle of the filaments. This is in good agreement
with more involved N-body simulations and the SDSS and 2dF surveys.

4.4 Caustics in three-dimensional simulations

Caustics can also be found in three-dimensional N-body simulations. Since it is more
time consuming to perform three-dimensional N-body simulations and more difficult to
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() Ata=0.9 (f) At a=1.0

Figure 4.2: Two-dimensional N-Body simulation of Gaussian matter perturbations [33]
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Figure 4.3: Cold dark matter and warm dark matter simulation of a halo.

visualize three-dimensional structures, we use the simulations and illustrations of Lovell
et al. [44]. Lovell et al. analyzed whether the ’to big to fail problem’ can be resolved
by considering a warm dark matter model in stead of the standard ACDM model. They
have resimulated one of the Aquarius N-body haloes with the power spectrum suppressed
at small scales.

The results of the resimulation are illustrated in figure 4.3. The left and right panel
contains the cold and warm dark matter simulation respectively. The cold dark matter
simulation looks messy with many small satellite halos circling the large central halo.
In the warm dark matter simulation, these small structures are suppressed. We instead
can see caustics encapsulating the center of the central halo. We see large sheets, thin
lines and singular points. A study of caustics in three-dimensions would analyze all
these individual features. In this thesis we will however restrict our self to one- and
two-dimensional models of the universe.
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Chapter 5

Lagrangian Catastrophe Theory

A small push often results in a small movement. A harder push results in a larger
movement. This incremental response to incremental stresses is very common in na-
ture. There are however situations in which a small push results in a dramatic response.
Consider, for example, the boiling of water, the collapse of a bridge or the capsizing of
a boat. Such a response is called a “catastrophe”. Although these situations are rare,
they are also typical. If we load a bridge with leaves, it is difficult to predict which
leave will make the bridge collapse. It is however, certain that the collapse will occur.
The study of systems in which catastrophes occur, is called catastrophe theory. This
theory can also be used to describe the occurrence of caustics in optical systems or the
filaments and clusters in the cosmic web. This branch of catastrophe theory emerges
from projections of high-dimensional surfaces to lower-dimensional spaces and is called
Lagrangian catastrophe theory.

The term catastrophe theory was introduced in 1972 by René Thom. The subject
can however be traced from Huygens, via Cauchy, to Poincaré, Morse, Whitney, Thom,
Zeeman to Arnol’d. This list is far from complete. Cayley, Maxwell and later Morse
derived a classification of nondegenerate critical points, which is now known as Morse
theory. Whitney proposed a classification of degenerate critical points. Thom extended
Whitney’s theorem. Thom’s articles became very popular by articles of Christopher
Zeeman on Thom'’s classification. Arnol’d extended Thom’s classification, for more gen-
eral functions. Moreover, he applied the theory to Lagrangian maps, leading to the
branch of Lagrangian catastrophe theory. For a more elaborate description of the his-
tory and development of catastrophe theory see ‘Catastrophe Theory’ by Arnol’d [5]. In
this chapter we give an intuitive introduction to Lagrangian catastrophe theory. For a
formal discussion of this topic see chapter 7.

5.1 Caustics

Figure 5.1 shows a glass of hot water in which we steep tea. Initially the water is trans-
parent. In the process of steeping tea, a two-dimensional surface in a three-dimensional
space appears on the boundary of the colored and transparent water. We however ob-
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serve a projection of this surface onto a two-dimensional plane due to the limitations
of our eyes. Because of the projection, we observe lines in the projection at places at
which the surface is tangential to the line of sight. These lines, generally called caustics,
contain differentiable segments and points at which the curve follows a nondifferentiable
path. These points are called singular.

Lagrangian catastrophe theory plays a very prominent role in the problem of project-
ing manifolds onto lower-dimensional spaces. Consider a two-dimensional differentiable
manifold M embedded in the three-dimensional space R?. While the manifold is locally
diffeomorphic to R? and is smooth at every point, the projection p of the manifold to
the two-dimensional plane R?, defined by p : (z,y, 2) € M + (z,y), can contain singular
features. There can exist points in the plane with an empty preimage p~'(z,y), and
points with a finite or even infinite number of points in the preimage. These regions are
separated by curves, commonly called caustics.

Lagrangian catastrophe theory classifies these curves and their singular points up to
coordinate transformations. Smooth curves are called fold catastrophes also known as
As-lines. The singular points are cusp catastrophes also known as Az points. The fold
and cusp catastrophes move over time and evolve, in which they pass through so-called
swallowtail and umbilical catastrophes respectively denoted by A4 and Dy4. According to
Lagrangian catastrophe theory, the As, A3, A4, and D4 catastrophes are the only catas-
trophes occurring in the projection of a two-dimensional manifold onto a two-dimensional
plane (as in the example of steeping tea). In projections of higher-dimensional spaces
the Ay, Dy, Fg, F7, and Fg catastrophes can additionally occur, with integer k£ > 5. In
three-dimensional large-scale structure evolution the catastrophes up to £k = 5 can occur.
In the subsequent sections of this chapter we describe several elementary catastrophes
pictorially and in dynamical situations. We follow the dynamical examples of Castri-
giano et al. [18]. The names of the catastrophes were proposed by Whitney and Thom.

5.2 As: The fold catastrophe

For the fold catastrophe, consider a cylinder of unit radius and unit mass on a hill (see
figure 5.3). We denote the slope of the hill by « and let the center of mass C of the
cylinder be located at an inner circumference with a radius 0 < r < 1. Point P is the
contact point of the cylinder with the hill and © is the angle between the horizon and
the the line through the center of mass and the center of the cylinder. The potential
energy of the system is

V(©,a) =0Osina — rsin© + ¢(«a)

with the gravitation constant g set to 1 and ¢ : [0,27) — R. The critical points of this
potential can be found by equating

F(©,a) = ov =sina —rcos©

00
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5.2. As: The fold catastrophe

Figure 5.1: The caustics of tea steeping
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Figure 5.2: The catastrophe surface M of a cylinder on the hill
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Figure 5.3: Cylinder on hill illustrating the fold catastrophe

with zero. The system is in a equilibrium if and only if

r

(©,0) € My = {(@,a)| cos© = Smo‘}.

The catastrophe surface M is illustrated in figure 5.2. For small «, the cylinder has two
equilibrium positions in which C' is directly above P, one in which C' is at the top and
one in which C' is located bottom of the inner circumference (see figure 5.3a, and 5.3b).
If @ increases smoothly, the two equilibrium positions will merge into one at o = arcsinr
(see figure 5.3c). For o > arcsinr no equilibrium position exists. As a consequence the
cylinder must rolls off the hill. This catastrophe is called the fold catastrophe. The name
fold refers to the shape of the equilibrium surface in configuration space (see figure 5.2).

5.3 Ajs: The cusp catastrophe

For the cusp catastrophe we consider the Zeeman catastrophe machine, devised by E.
C. Zeeman in 1969 [71]. Consider an elastic string of unit length attached to the origin
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Figure 5.4: Zeeman catastrophe machine

and a fixed point P on the b