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Abstract

There have been many attempts to explain how the large-scale structure of our cosmos
has formed and is developing. We are, however, still unable to make an unambiguous
classification of features of the cosmic web or make qualitative predictions. The usual
approach to model large-scale structure formation is to assume that in the very early
universe, the baryonic and dark matter was distributed in a certain way and that this
matter distribution then evolved according to certain mechanics into the universe as we
observe it now. In my thesis, I assume that the initial matter distribution can be modeled
by Gaussian random fields. For the evolutionary mechanics, I use Lagrangian fluid
dynamical approximations. In these approximations, layers of matter will flow through
each other, a process called shell-crossing, which creates regions of infinite density, called
caustics. These caustics can be seen as a skeleton of the cosmic web, both in the initial
conditions as in the current large-scale structure. In my thesis, I look at the role of these
caustics in structure formation, compare the caustics skeleton to numerical simulations of
the cosmic web and try to make qualitative predictions of the skeleton as function of the
initial distribution of the perturbations. We first concentrate on the linear Lagrangian
approximation, known as the Zel’dovich approximation, and subsequently extend our
approach to higher corrections and effective field theories. In particular, I try to estimate
the length of lines and density of vertices in the skeleton in the early and present day
universe.
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Chapter 1

Introduction

Mankind has always been fascinated by questions about its own origin. Where do we
come from and how did the universe come about? Did time start at some instant and is
there an end of time? Until the start of the twentieth century, answers to these questions
remained merely philosophical. Newton’s law of gravitation was simply not sufficient to
model the evolution of the universe. However, since the discovery of general relativity by
Albert Einstein in 1916, this has dramatically changed. Cosmology has developed into
an exciting science with many revolutionary new insights, often rewarded with Nobel
Prizes.

Using Einstein’s theory of general relativity, the Russian physicist Alexander Fried-
mann derived equations that describe the expansion of space in homogeneous and isotropic
models of the universe. In such models, a universe can expand and contract; it can have
a beginning and an ultimate end. Final proof in favor of a universe with a beginning –
a Big Bang – was found by Arno Penzias and Robert Wilson. They observed the after-
glow emitted by some hot medium, present at some earlier epoch. For this (accidental!)
observation Penzias and Wilson were awarded with a Nobel Prize. The afterglow, or
radiation field, they observed is nowadays known as the cosmic microwave background.
It is a relic of the early universe. Many more detailed studies followed. The most recent
complete survey was performed with the Planck satellite and its observation is depicted
in figure 1.1. This figure shows the density fluctuations in the early universe or, to be
more precise, at the moment the universe became neutral.

Not only the past, but also the present universe can nowadays be observed in great
detail. The Sloan Digital Sky Survey (SDSS) and the two-degree-Field Galaxy Redshift
Survey (2dF) are, at the moment, the most complete surveys of the galaxy distribution
at the mega parsec scale (see figure 1.2). In the depicted observations we can distinguish
a very striking structure: the cosmic web (or large-scale structure). This web contains
points, lines and surfaces, that are commonly referred to as clusters, filaments and walls.
These structures are largely in agreement with simulations of the current universe, as
predicted based on the early universe density fluctuations, mentioned earlier (see for
example the Millennium simulation in figure 1.3).

In the last decades, analyses of the cosmic microwave background have led to many

11
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Figure 1.1: The cosmic microwave background observed with the Planck satellite

(a) Slices through the SDSS 3-
dimensional map of the distribution of
galaxies

(b) Slices through
the two-degree-Field
Galaxy Redshift Survey

Figure 1.2: Large scale structure surveys
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Figure 1.3: A slice through the Millennium simulation
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insights in the physics of the early universe; our universe originated at the Big Bang,
expanded and cooled down. In this process tiny fluctuations were generated that have
led to the large-scale structure we observe today. Although the formation of this cosmic
web is a nonlinear process, in principle these structures still contain information about
the early universe. Hence, a detailed analysis of the cosmic web may give us clues about
the physics just after the Big Bang. In this thesis, we try to recover this information by
estimating the number density of clusters and the length of filaments, as a function of
the initial fluctuations in the cosmic microwave background. This may in the end tell
us about the current universe as well as about its beginning.

In this initial investigation we use the Zel’dovich approximation to model large-scale
structure formation. The Zel’dovich approximation is a linear Lagrangian fluid dynami-
cal approximation proposed in 1970 by Zel’dovich [72]. It assumes that the fluid elements
move in straight lines with directions and velocities determined at the initial time and
do not feel the gravitational force of its environment at later points in time. This ap-
proximation of nature is adequate up to the mildly non-linear regime, when clusters
and filaments start to form. During the further evolution of clusters and filaments it
however becomes invalid, since in nature matter is supposed to turn around and stick
to a filament or cluster.

It furthermore predicts the location and time at which filaments or clusters starts to
form. Structures are supposed to form in regions where matter flows pass through each
other, resulting in so-called caustics. This process is completely analogous to the creation
of caustics in optical systems and can be analyzed and classified by Lagrangian catastro-
phe theory developed by Vladimir Arnol’d. In 1982 Arnol’d, Shandarin and Zel’dovich
[6] found conditions on the initial gravitational field for the formation of caustics.

In this thesis we combine these caustics conditions with geometric statistics of the
initial density perturbations modeled by Gaussian random fields. Geometric statistics
of stationary random processes were first investigated in 1936 by Stephen Rice. He
analyzed level crossings of noise in communication devices. Here we use an extended
analysis in which time is replaced by R2, or R3, and the random process is called a Gaus-
sian random field. Under certain conditions we can ensure the field to be smooth and
calculate number densities of point statistics and average lengths of level sets. In this
way we calculate statistics of the caustics predicted by the Zel’dovich approximation.

Although the Zel’dovich approximation can serve as a first investigation of the role
of caustics in large-scale structure formation, it has its limitations in collapsed regions.
In this thesis we determine the role of caustics in Eulerian and Lagrangian effective field
theory. This new perturbation scheme in the study of large-scale structure formation is
an approach commonly used in high energy physics. We model the small scale physics
as an imperfect fluid, and in this way include the influence of the small scale on the
large scale, reaching more accurate results than obtained through standard perturbation
theory.

The research that has led to this thesis has been supervised by professor Rien van
der Weygaert (cosmology), professor Aernout van Enter (statistical mechanics) and dr.
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Diederik Roest (string cosmology). This thesis has a clear astronomical, mathematical
and physical component.

• In chapters 2, 3, 4, 5, 6, 9, and 14 we discuss the process of large scale structure
formation and the creation of caustics in the Zel’dovich approximation. Numeri-
cally determined statistics are presented in chapter 14. These chapters are mainly
on the topic of astronomy.

• In chapters 7, 8, 10, 11, 12, and 13 we formally discuss catastrophe theory, Gaussian
random field theory, and geometric statistics on them. We furthermore present an-
alytic statistics of caustics in Gaussian random fields. These chapters are primarily
mathematical.

• Finally, in chapters 15, 16, 17, 18, and 19 we discuss the application of effective
field theory to the study of large scale structure and, in specific, caustics. These
chapters are mostly about physics.

This division of the chapters is far from absolute, as is the division between the sciences.
The chapters should be seen as a unit: the mathematical and physical chapters are in-
tertwined with the astronomy chapters. Combined, they tell the story of my exploration
of the role and use of caustics in the study of the cosmic web.
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Chapter 2

Cosmology

Cosmology is one of the oldest branches of science. For centuries, mankind has been
trying to understand the origin, nature and eventually the end of our universe. For
a long time, cosmology remained in the realm of religion and philosophy. However, in
1916, Albert Einstein changed this for good by publishing his theory of general relativity
[25]. General relativity became the framework in which precise cosmological predictions
could be made, making cosmology a physical discipline.

According to Einstein, space and time are dynamical quantities. According to the
work of Alexander Friedmann in 1922, this also made the universe itself dynamic [28].
The universe could be expanding or contracting, originating, and even ending at some
definite time. The dynamics of large scales satisfies the so called Friedmann equations.
However, the scientific community was not yet ready for a dynamical universe when
general relativity appeared. Einstein introduced a cosmological constant to stabilize his
universe and remove the dynamics. In 1929, Edwin Hubble published a paper in which
he presented observations of the redshift of several stars as function of their distance
[36]. This indicated a systematic velocity of galaxies moving away from us. The Ro-
man Catholic priest Georges Lemâıtre had already two years earlier interpreted such a
distance-redshift relation as proof of the expansion of the universe [41]. After some years
Einstein removed his cosmological constant and declared it to be his greatest blunder.
This became the starting point of a physical debate about the evolution of the universe.
Is the universe a stable object which has always existed, or did it have a beginning and
would it someday even end?

The debate about the evolution of the universe was finally decided in 1965 by ac-
cidental observations of the two radio astronomers Arno Penzias and Robert Wilson
[52]. George Gamow studied dynamic universes under Friedmann in the years before his
death. Gamow continued his scientific career by studying tunneling in alpha- and beta-
decay. In 1948 he revisited his study of the universe with Ralph Alpher by analyzing
the matter content produced during the early universe. This lead to the α-β-γ-paper [3]
describing the production of the light elements in the universe. Shortly afterwards Ralph
Alpher and Robert Herman predicted an afterglow of a hot early epoch of the universe
currently present as a black body spectrum with a temperature of T = 5K [2]. This

17
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work remained ignored for many years. Around 1964, Penzias and Wilson had started
the construction of a radio telescope to perform satellite communication experiments.
During these observations they observed an excess noise of about 3 Kelvin, which they
could not remove or account for. After a telephone call with professor Robert Dicke
at Princeton University, the noise was found to be a remnant of an early hot phase of
the universe, for which Robert Dicke was looking. Penzias, Wilson and Dicke wrote two
separate papers describing the observation [69] and explanation [22]. This remnant is
nowadays called the Cosmic Microwave Background radiation (CMB). This discovery
led to a Nobel prize in physics for Penzias and Wilson in 1974.

From these early observations of the CMB, the astronomical community concluded
that the CMB contains a vast amount of information about our Universe. Many more
detailed observations of the CMB followed. The most recent measurements were made
with the European Space Agency (ESA) Planck satellite. Extensive measurements of
the CMB have unleashed a revolution in cosmology. It is the earliest observable image
of our universe and has had a great influence on the development of the Big Bang theory
and structure formation models. In this chapter we give a description of cosmology. We
start with general relativity, derive the Friedman equations and study some cosmological
models. We finish with the concordance model, which is a Friedmann model with good
agreement with observational data. In this chapter we largely follow ’A short course in
General Relativity’ by James Foster and J. David Nightingale [27] and an ’Introduction
to Cosmology’ by Barbara Ryden [60].

2.1 Einstein field equations

In 1905 Einstein published his famous theory of special relativity. According to special
relativity the speed of light in vacuum is universal and therefore independent of the
velocity of an observer. This is in clear conflict with Newtonian physics, in which
one has to add the observer’s speed to the speed of light. Special relativity therefore
forms a correction to Newton’s dynamics when velocities close to the speed of light are
considered. Special Relativity has so far been in perfect agreement with observations in
which gravity is relatively weak. However, the introduction of these corrections also led
to the inescapable conclusion that space and time, now called spacetime, can be mixed
in a very special way and that the speed of light c is the maximum speed at which
information can travel.

After the triumph of special relativity a new problem appeared. Einstein’s new theory
was in conflict with Newton’s law of gravitation. According to Newton, a change in the
mass of an object and thus in its gravitational field, would instantaneously be effective
throughout space, whereas special relativity predicted a finite speed limit on information.
In order to resolve this issue Einstein proposed his theory of general relativity to replace
Newton’s law of gravitation.

According to general relativity, energy, momentum and pressure densities described
in the energy momentum tensor Tµν (as illustrated in figure 2.1) possess the power to
bend spacetime. To be more precise, the curvature of space-time can be described by
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Figure 2.1: The Stress Energy Tensor

the metric tensor gµν which defines the distance ds between points via

ds2 =
∑
µν

dxµdxνg
µν = dxµdxνg

µν .

This definition should be seen as a generalization of the Pythagorean theorem. Starting
from the metric tensor gµν we can compute the Ricci tensor Rµν defined as

Rµν =Γσµσ,ν − Γσµν,σ + ΓρµσΓρνσ − ΓρµνΓσρσ,

with the Christoffel symbol

Γσµν =
1

2
(gσµ,ν + gσν,µ − gµν,σ).

Finally, the Ricci curvature scalar is given by

R = gµνRµν .

In these equations, we use the shorthand gµν,σ =
∂gµν
∂xσ

and use the Einstein summation
convention which states that all dummy indices are summed over.

The bent spacetime in turn influences the movement of objects and therefore in-
fluences the energy distribution. The exact interplay between energy and spacetime is
described by the Einstein field equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , with µ, ν = 0, 1, 2, 3,

where G is Newton’s gravitational constant and c is the speed of light in vacuum.

2.2 Friedmann equations

The Einstein field equations form a complicated system of nonlinear differential equa-
tions. These equations are valid for slow moving particles with weak gravitational fields
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as well as physical situations with object approaching the speed of light in strong gravi-
tational fields such as black holes. However, Einstein’s field equations can also model the
evolution of the universe as a whole. Assuming a completely homogeneous and isotropic
universe, nowadays part of the cosmological principle, Alexander Friedmann, in 1922
[28], and later independently Georges Lemâıtre, in 1927 [41], derived expressions for
such models of the universe.

The imposed symmetry on space kand time restricts the freedom of the metric gµν
considerably. Roberson and Walker proved that the metric in a universe satisfying the
cosmological principle in polar coordinates r, θ, φ must be of the form of the Robertson-
Walker metric

ds2 = gµνx
µxν = dt2 −R(t)2

(
(1− kr2)−1dr2 + r2dθ2 + r2 sin2 θdφ2

)
,

with R(t) the curvature radius, xµ = (t, r, θ, φ) the space-time coordinates and k =
−1, 0, 1 describing the geometry of the universe, respectively hyperbolic, flat and spher-
ical space. In this expression and the expressions that will follow we chose dimensions
such that the speed of light c = 1. Friedmann furthermore assumed that the universe
is filled with a perfect fluid, free of shear-viscosity, bulk-viscosity or heat-conducting
properties. The energy-momentum tensor of such a fluid is

Tµν = (ρ+ p)uµuν − pgµν ,

with ρ the density, p the pressure, gµν the metric and uµ the velocity of the fluid.
Using the differential geometry machinery we can compute the corresponding Christof-

fel symbols. The nonzero components with implied symmetry Γµνσ = Γµσν are

Γ0
11 =RṘ/(1− kr2), Γ0

22 = RṘr2, Γ0
33 = RṘr2 sin2 θ,

Γ1
11 =kr/(1− kr2), Γ1

22 = −r(1− kr2), Γ1
33 = −r(1− kr2) sin2 θ,

Γ2
12 =Γ3

13 = 1/r, Γ2
33 = − sin θ cos θ, Γ3

23 =
1

tan θ
,

Γ1
01 =Γ2

02 = Γ3
03 = Ṙ/R,

with Ṙ = ∂R
∂t . These Christoffel symbols can be used to compute the Ricci tensor, whose

nonzero components are

R00 =3R̈/R,

R11 =− (RR̈+ 2Ṙ2 + 2k)/(1− kr2),

R22 =− (RR̈+ 2Ṙ2 + 2k)r2,

R33 =− (RR̈+ 2Ṙ2 + 2k)r2 sin2 θ.

Since all diagonal terms of the Ricci tensor are zero, we are only interested in the trace
of the energy-momentum tensor for the Einstein field equations

T = Tµν g
ν
µ = (ρ+ p)uµuνg

µν − 4p = ρ− 3p,
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since from special relativity we know that uµuνg
µν = 1. After substitution of these ex-

pressions in the Einstein field equations we obtain two independent differential equations

3R̈/R =− 4πG(ρ+ 3p)

RR̈+ 2Ṙ2 − 16πG =4πG(ρ− p).

Eliminating R̈ from these equations and writing R in terms of the Hubble parameter H
and the normalized scale parameter a

a =
R(t)

R0
,

H(t) =
Ṙ

R
=
ȧ

a
,

with R0 the current curvature, we obtain the Friedmann equations

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

R2
0a

2
,

ä

a
= −4πG

3

(
ρ+

3P

c2

)
.

The second equation is often combined with the first to obtain the conservation of energy

0 = ρ̇+ 3
ȧ

a
(ρ+ Pc2).

In this equation a denotes the scale of the universe, ȧ = da
dt and ä = d2a

dt2
its time

derivatives, H is the Hubble parameter known from the Hubble law, ρ denotes the
sum of the energy densities (composed out of matter, radiation and dark energy), while
k = 0, 1 or −1 for a flat, a spherical or a hyperbolic universe respectively. The factor R0

denotes the current radius of curvature. The factor P in the second equation describes
the pressure in the universe.

In order to completely solve the Friedmann equations, one has to know the nature of
the energy densities making up the energy content curving the universe. The behavior of
energy during the evolution of our universe is encoded in the second Friedmann equation
in combination with the equation of state P = wρ. For baryonic and cold dark matter
w is well approximated by 0, while for radiation w = 1/3. For dark energy the factor w
is not well known. It should be smaller then −1/3 in order to generate an accelerated
expanding universe and greater than −1 in order to satisfy causality. Dark energy is
often equivalent to a cosmological constant by which w = −1. The equations of state in
combination with the second Friedmann equation lead to the conclusion that the matter
density in the universe dilutes like a−3, while radiation dilutes like a−4. The dark energy
content with equation of state parameter w = −1 remains constant during the expansion
of space-time. This is the reason that we may suspect that the cosmological constant is
a property of space-time it self.
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Assuming the presence of a cosmological constant, the Friedmann equations can be
rewritten as

H2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
+ ΩΛ,0 +

1− Ω0

a2
,

with Hubble parameter H, current Hubble parameter H0, current radiation density
Ωr,0 = ρr,0/ρc,0, current matter density Ωm,0 = ρm,0/ρc,0, current dark energy density
ΩΛ,0 = ρΛ,0/ρc,0 and current energy density Ω0 = Ωr,0 +Ωm,0 +ΩΛ,0. The current critical

density ρc,0 =
3H2

0
8πG is the energy density necessary to make our universe flat (k = 0).

This form of the Friedmann equations is most convenient in large scale structure for-
mation, since it explicitly describes the evolution of the universe in terms of measurable
cosmological parameters.

2.3 Cosmological toy models

As described above, the energy content and geometry of the universe determine the
large-scale evolution of the universe. Radiation, baryonic matter and dark matter slow
the expansion down whereas the dark energy or cosmological constant accelerate the
expansion. In this section we study some solutions of the Friedman equations describing
the evolution of different models of the universe.

We start with the radiation, matter-dominated (Einstein-de Sitter) and dark-energy
dominated (de Sitter) model after which we describe the concordance model which is
based on the Planck satellite observations.

2.3.1 Radiation-dominated universe

After the big bang, the universe went through a phase in which all particles moved with
velocities close to the speed of light. The particles were relativistic and contributed
to the energy content of the universe in the form of radiation. During this epoch the
evolution of the universe can be modeled by a flat, radiation-only universe. Under these
assumptions the Friedmann equations simplify to

H2

H2
0

=
ȧ2

H2
0a

2
=

1

a4
.

This differential equation is equivalent to

ȧ =
H0

a
,

and can be solved by

a(t) =

(
t

t0

)1/2

,

with t0 the current age of the universe.
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2.3.2 Einstein-de Sitter universe

One of the earliest epochs of our universe can be modeled by a flat radiation-dominated
universe. However since the radiation density evolves as a−4 whereas the matter density
evolves as a−3 there exists a time at which the matter density of the universe becomes
more important than the radiation density. At this epoch we model the universe by
a flat-matter-only model. This model is commonly known as the Einstein-de Sitter
universe. In an Einstein-de Sitter universe, the Friedmann equation simplifies to

H2

H2
0

=
ȧ2

H2
0a

2
=

1

a3
.

This differential equation is equivalent to

ȧ =
H0

a1/2
,

and can be solved by

a(t) =

(
t

t0

)2/3

.

2.3.3 De Sitter universe

A radiation-dominated phase in which a ∝ t1/2 followed by a matter-dominated phase
in which a ∝ t2/3 was the generally accepted model of cosmology until 1993-1997. How-
ever, in 1998 the High-Z Supernova Search Team led by Brian Schmidt and Adam Reiss
[58] and the Supernova Cosmological Project led by Perlmutter found evidence for an
accelerated expansion [53]. This discovery led to new interest in the cosmological con-
stant or a dark energy component. In the current model of cosmology we think that the
matter-dominated phase is followed by a flat dark-energy-dominated phase, first studied
by Willem de Sitter and often called the de Sitter universe.

In a flat dark-energy-dominated universe with w = −1 (a cosmological constant),
the Friedmann equation simplifies to

H2

H2
0

=
ȧ2

H2
0a

2
= 1.

This differential equation is equivalent to

ȧ = H0a,

and can be solved by

a(t) = eH0(t−t0).
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(a) Energy content of the universe es-
timated by the Planck satellite, credit:
ESA/Planck

(b) The expansion of the universe, credit:
WMAP

2.4 The concordance model

The models above give us insight in the behavior of the Friedmann equations. However,
in reality we live in a universe composed of radiation, dark matter, baryonic matter,
and dark energy. Observations of the cosmic microwave background with the Planck
satellite indicate that our universe is nearly flat and is currently composed for 4.9%
out of baryonic matter, for 26.8% dark matter and for 68.3% dark energy (see figure
2.2a). This model is often called the dark energy, cold dark matter model ΛCDM. The
universe first went through a radiation-dominated phase in which a ∝ t1/2, followed by
a matter-dominated phase in which a ∝ t2/3 after which the universe evolved as a de
Sitter universe in which a ∝ eH0t. In figure 2.2b we illustrate the expansion history of
different cosmological models. The yellow red illustrates the concordance model. The
universe was born 13.798± 0.037 billion years ago and will forever keep expanding and
accelerating.

2.4.1 Open problems in cosmology

In the twentieth century and the start of the twenty-first century we have greatly ex-
tended our understanding of the evolution of the universe on the largest scales. The
universe was born 13.798 ± 0.037 billion years ago, and expanded to our current uni-
verse. However, there are many remaining questions. For example, what is the source
and nature of dark matter and dark energy? How does the large-scale cosmology in-
fluence the structure in the universe? There are also fine-tuning problems within the
ΛCDM model. The extreme flatness of our universe and the homogeneity of the CMB
are very special and unlikely circumstances in the concordance model. These problems
are well known as the flatness and horizon problems. One of the proposed explanations
for these problems is formed by a process called inflation. Inflation theory has however
so far not been explained by some fundamental theory.
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Large-Scale Structure Formation

In chapter 2 we described homogeneous and isotropic solutions of the Einstein field equa-
tions. These models of the universe are completely specified by the scale factor a which
is a function of time. The universe as we observe it today, contains a lot more structure.
The solar system is far from homogeneous or isotropic. The cosmological principle is a
good approximation only at scales substantially larger than 100 Mpc. On smaller scales
several surveys, including the Sloan Digital Sky Survey (SDSS), have detected an intri-
cate weblike structure composed out of galaxies. This structure is commonly called the
large-scale structure (LSS) of the universe or the comic web. It originated from small
fluctuations which are still observable as small temperature fluctuations in the cosmic
microwave background radiation field.

In this chapter we describe the evolution of small density fluctuations upon a homo-
geneous and isotropic Friedmann universe. In principle this should be done in a general
relativistic setting. We will here however only consider the Newtonian limit. We start
with the Boltzmann equation and derive the differential equations governing the evolu-
tion. We subsequently study Lagrangian approximations. We in particular concentrate
on the linear Lagrangian approximation, i.e. Zel’dovich Approximation (ZA) proposed
in 1970 by Zel’dovich [72]. In the last part of this thesis, we use these equations to build
an effective field theory of large-scale structure formation.

3.1 The Boltzmann equation

The concordance model, described in the previous chapter, consists of radiation, mat-
ter (dark and baryonic) and dark energy. The formation of the large-scale structure
has taken place in the matter and dark energy dominated eras. For this reason we
will neglect the influence of radiation on structure formation. Although the nature of
baryonic matter and dark matter differ greatly, i.e. baryonic matter couples to the
electro-magnetic field whereas dark matter does not, we will not distinguish between
the two in our models. We do not know the precise properties of dark matter. We
however do know that there is approximately five times more dark matter than baryonic
matter and that both forms of matter couple to gravity. For this reason we will assume

25
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that matter in general is fundamentally described by a collection of identical collisionless
classical non-relativistic particles interacting only via gravity.

The evolution of fluctuations in the matter density evolves via the collisionless Boltz-
mann equation. We follow the analysis of Carrasco et al [16] and Bernardeau et al
[10]. For a collisionless system it is not useful to follow the orbits of each individ-
ual particle. Instead we can consider the distribution function f which is defined such
that f(x,p, t)dxdp is the probability to find chosen particle in the phase-space interval
[x,x + dx] × [p,p + dp] at time t. By definition, the distribution function of a system
with N particles is normalized such that∫

f(x,p, t)dxdp = N ∀t.

For a classical point particle,

f(x,p, t) = δ(d)(x− x1)δ(d)(p−mv1),

with v1 velocity and x1 of particle one and δ(d) the Dirac delta function in d dimensions.
In an N -particle system the total phase space density f is

f(x,p, t) =
N∑
n

fn(x,p, t) =
N∑
n

δ(d)(x− xn)δ(d)(p−mvn),

with xn and vn the position and velocity of the nth particle and x and p denoting of
the position and momentum of all particles simultaneously.

Any given particle moves through phase-space, by which the probability of finding the
particle at any given phase-space location f evolves with time. As f evolves, the proba-
bility must be conserved at all times, i.e. we do not allow for the creation or destruction
(annihilation) of dark matter particles. This can formally be expressed in terms of the
Boltzmann equation. Differentiating the distribution function with respect to time gives
the Boltzmann equation

df

dt
=
∂f

∂t
+

∂

∂x
· (f ẋ) +

∂

∂p
· (f ṗ) =

∂f

∂t
+ ẋ · ∂f

∂x
+ ṗ · ∂f

∂p
.

For Hamiltonian systems we can use Hamilton’s equations to rewrite the Boltzmann
equation in the form

df

dt
=
∂f

∂t
+
∂f

∂x
· ∂H
∂p
− ∂f

∂p
· ∂H
∂x

.

The total derivative on the left hand side describes the collisions between particles. It
is for this reason often denoted as

df

dt
=

df

dt

∣∣∣∣
coll

.



27 3.1. The Boltzmann equation

The partial derivatives on the right hand side describe the evolution of the particles
without interactions. When the interactions between the particles do not significantly
influence the momenta of the individual particles, we can consider the collisionless limit.
The corresponding Boltzmann equation is the collisionless Boltzmann equation

0 =
df

dt

∣∣∣∣
coll

=
∂f

∂t
+
∂f

∂x
· ∂H
∂p
− ∂f

∂p
· ∂H
∂x

.

In this thesis we will assume collisionless dark matter, described by the collisionless
Boltzmann equation. We for this reason always assume

df

dt

∣∣∣∣
coll

= 0.

There however exist more involved theories of dark matter in which the collisional term
should be taken into account.

The distribution function of a single particle f1 in a gravitational field evolves according
to the Boltzmann equation

0 =
∂f1

∂t
+

p

m
· ∂f1

∂x
−m

∑
m 6=1

∂Φm

∂x
· ∂f1

∂p
,

where m is the mass of the particle and Φn is the single particle Newtonian potential

Φn = − Gm

|x− xn|
.

By assuming that all particles have the same mass and by summing over the N particles
in our N -body problem, we obtain the Boltzmann equation for the total phase space
density f ,

0 =
∂f

∂t
+

p

m
· ∂f
∂x
−m

∑
n,m;m 6=n

∂Φm

∂x
· ∂fn
∂p

.

By solving the Boltzmann equation, we can in principle fully understand the formation
of large-scale structure. Physical observables such as the mass density ρ, momentum
density π, velocity field u, and kinetic tensor σ can be obtained by taking moments with
respect to the phase space density,

ρ(x, t) =m

∫
f(x,p)dp = m

N∑
n

δ(d)(x− xn),

πi(x, t) = ρ(x, t)ui(x, t) =

∫
pif(x,p)dp = m

N∑
n

vinδ
(d)(x− xn),

σij(x, t) =

∫
pipjf(x,p)dp = m

N∑
n

vinv
j
nδ

(d)(x− xn).
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This task is however extremely difficult, since the Boltzmann equation is a 6N -dimensional
non-linear differential equation. We can instead consider lower dimensional approxima-
tions. Assume that matter behaves as a so-called dark matter fluid. By integrating the
collisionless Boltzmann equation with respect to momentum we obtain the conservation
of mass

∂ρ

∂t
+∇ · (ρu) = 0.

By multiplying the collisionless Boltzmann equation with pi and again integrating over
all momenta, we obtain the Euler equation

∂u

∂t
+ (u · ∇)u = −∇Φ− 1

ρ
∇ · (ρσij) = −∇Φ− 1

ρ
∇P.

These equations are known as the Jeans equations and will be used in the subsequent
chapters. Note that we can also derive the conservation of energy from the collisionless

Boltzmann equation, by multiplying with p2

m and integrating over all momenta. The
collection of the conservation of mass, conservation of energy and Euler equation without
a gravitational potential are called the fluid equations. This system of equations is
closely related to the Navier-Stokes equation which is one of the unsolved millennium
problems. The deep connection between the large-scale structure formation and the
Navier-Stokes equations underlines the complexity of large-scale structure formation.
Large-scale structure formation is just a special application of fluid dynamics.

3.2 Evolution of matter density fluctuations

In the previous section we derived the fluid equations from the collisionless Boltzmann
equations. By adding the Poisson equation we close the system of differential equations.
The conservation of mass, Euler and Poisson equation in there most familiar form are

∂ρ

∂t
+∇r · ρu = 0,

∂u

∂t
+ (u · ∇r) u = −∇rΦ−

1

ρ
∇rP,

∇2
rΦ = 4πGρ,

with density ρ, velocity u, pressure P , and gravitational potential Φ at some position r
and time t.

The spatial coordinate r denotes a physical position. This includes the expansion
of the homogeneous background universe. We can write the fluid equations above as
deviations with respect to the homogeneous expanding universe by introducing comoving
coordinates

x(t) =
r(t)

a
.
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Note that in a completely homogeneous universe, the physical position r evolves whereas
the comoving position x is constant. Analogously, the density ρ can be written in terms
of density fluctuations δ with respect to the background (average) density ρu by

δ(x, t) =
ρ(x, t)− ρu(t)

ρu(t)
.

The gravitational potential can be written in terms of the potential perturbations, sub-
tracting the potential term describing the homogeneous expansion

φ(x, t) = Φ(r, t)− 1

2
aäx2.

The velocity v can be expressed in terms of peculiar velocity defined as the derivative
of the comoving coordinate,

v = a
dx

dt
= aẋ = u− ȧx.

Substituting the comoving variables, results in the comoving fluid equations

∂δ

∂t
+

1

a
∇x · (1 + δ)v = 0,

∂v

∂t
+

1

a
(v · ∇x) v +

ȧ

a
v = −1

a
∇xφ−

1

aρu(1 + δ)
∇xP,

∇2
xφ = 4πGa2ρuδ =

3

2
ΩH2a2δ.

Note that in a medium with vanishing pressure gradient, i.e. ∇xP = 0, and a gradient
field velocity field, with velocity potential V such that v = −∇xVa , the Euler equation
can be transformed to the Bernoulli equation

∂V
∂t
− 1

2a2
(∇xV)2 = φ.

This allows for an elegant treatment of approximations of the comoving fluid equations.

3.3 Linear Eulerian perturbation theory

The comoving fluid equations described above have two nonlinear terms. The ∇x · (δv)
term in the conservation of mass and the (v · ∇)v term in the Euler equation. Under
the assumptions

δ � 1

and (
vtexp
d

)2

� δ,
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with d the coherence length for spatial variations of δ, v the characteristic fluid velocity
and texp the expansion time (Gρu)−1/2, we assume that the terms ∇x · (δv), (v · ∇x)v
and the pressure gradient are negligible we obtain the linear approximation

δ̇ +
1

a
∇ · v = 0

v̇ +
ȧ

a
v = −1

a
∇xφ

∇2
xφ = 4πGρua

2δ.

Taking the divergence of the Euler equation, combining it with the Poisson equation and
substituting the continuity equation in this equation, we obtain the differential equation

δ̈ + 2
ȧ

a
δ̇ = 4πGρuδ.

In a matter-dominated homogeneous Friedmann universe (with δ ∝ a−3), the Friedmann
equations state that

4πGρu =
3

2
ΩH2 =

3

2a3
Ω0H

2
0 .

Substituting this equation in the differential equation governing the evolution of δ leads
to

δ̈ + 2
ȧ

a
δ̇ =

3

2a3
Ω0H

2
0δ.

In general, this equation can be solved in terms of a growing mode D+ and a decaying
mode D− as

δ(x, t) = D+(t)∆+(x) +D−(t)∆−(x),

in which D+ and D− describe the evolution of δ in time, while ∆+ and ∆− describe
the behavior of δ in space. If we neglecting the decaying mode D−, we obtain the
approximation

δ(x, t) = D+(t)∆+(x),

with the growing mode D+ explicitly depending on the background cosmology. For
universes with matter and dark energy, or a cosmological constant, the growing mode
can be solved as

D+(t) = H(t)

∫
dt

a2(t)H2(t)
.

In an Einstein-de Sitter universe, the growing mode equals the scale factor, i.e. D+(t) =
a(t). When the dark energy becomes dominant, growing mode tends to become constant.
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3.4 Lagrangian perturbation

Among fluid dynamical perturbation theories, we can distinguish Eulerian and La-
grangian approaches. In the previous section we saw the Eulerian approach, in which
we expand in the density. We analyze the flow of mass into and out of a fixed volume
element. In the Lagrangian approach, we expand in the displacement field of volume
elements. We define a Lagrangian volume element which follow the fluid in time. The
mass in such a Lagrangian volume element remains constant, while the shape and vol-
ume of the Lagrangian volume element can change dramatically. The density at some
time can be computed by dividing the mass in the Lagrangian volume element by its
volume at that time.

If no approximations would be made in the process, the Eulerian and Lagrangian
approach would give the same solution. In practice the comoving fluid equations have
the same level of complexity as the Navier-Stokes equations, by which we have to make
approximations and get a branch of Eulerian and Lagrangian approximations. The
Lagrangian approach turns out to form a better approximation of non-linear structure
formation than the Eulerian approach. In this section we study Lagrangian perturbation
theory and show why the Lagrangian approach can be expected to give better results
than the Eulerian approach.

3.4.1 Lagrangian comoving fluid equations

We apply the comoving fluid equations to the Lagrangian approach. A Lagrangian
solution of the fluid equations described above is a map R3 × R → R3, (q, t) 7→ x(q, t)
mapping an (Lagrangian) initial position q to an (Eulerian) position x(q, t) evolved over
some time t. Let s(q, t) = x(q, t) − q be the displacement field, corresponding to this
map.

The conservation of mass has a natural place in the Lagrangian approach. Neglecting
the initial density fluctuations, the density in Lagrangian space q is equal to the average
cosmic density ρu(t) at time t, by which the mass contained in each initial Lagrangian
volume element coincide. At later times, the conservation of mass implies that the mass
in each fluid element remains constant,

ρ(x, t)dx = ρu(t)dq.

The transformation of q to x can be seen as a coordinate transformation. Using the
Jacobian ‖ ‖, the density perturbation in the Lagrangian approach can be written as

1 + δ(x, t) =
ρ(x, t)

ρu(t)
=

∥∥∥∥∂x

∂q

∥∥∥∥−1

=

∥∥∥∥∂(q + s)

∂q

∥∥∥∥−1

.

In one spatial dimension, the displacement vector consists of one component

s = (s1).
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The Jacobian can be expressed in terms of ∂s/∂q as,∥∥∥∥∂x

∂q

∥∥∥∥ =1 +
∂s1

∂q1
.

In two spatial dimensions, the displacement field consists of two components

s =

(
s1

s2

)
.

The Jacobian can be written as∥∥∥∥∂x

∂q

∥∥∥∥ =1 +

(
∂s1

∂q1
+
∂s2

∂q2

)
+

(
∂s1

∂q1

∂s2

∂q2
− ∂s1

∂q2

∂s2

∂q1

)
.

In three spatial dimensions, the displacement field consists of three components

s =

s1

s2

s3

 .

The Jacobian can be written as∥∥∥∥∂x

∂q

∥∥∥∥ =1 +

(
∂s1

∂q1
+
∂s2

∂q2
+
∂s3

∂q3

)
+

(
∂s1

∂q1

∂s2

∂q2
+
∂s1

∂q1

∂s3
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−
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+
∂s1

∂q3
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+
∂s2
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∂q1

∂s2

∂q3

∂s3

∂q2
+
∂s1

∂q2

∂s2

∂q1

∂s3

∂q3

)
.

Up to linear terms of ∂s/∂q, in any number of spatial dimensions, this reduces to∥∥∥∥∂x

∂q

∥∥∥∥ = 1 +∇q · s,

with the reciprocal up to linear order

1 + δ =

∥∥∥∥∂x

∂q

∥∥∥∥−1

= 1−∇q · s,

since (1 +∇q · s)(1−∇q · s) = 1− (∇q · s)2 = 1. Hence we can approximate the density
perturbation δ up to linear order in ∂s/∂q by

δ(x, t) ≈ −∇q · s.
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This approximation will be important in the Zel’dovich approximation, since it does not
contain products of elements of ∂s/∂q which represent interactions or phase mixing.
Substitution of this identity in the comoving Poisson equation results in

∇2φ = −4πGa2ρu∇q · s.

The comoving Euler equation becomes more complex in the Lagrangian approach. Let
τ : R→ R be a (strictly increasing) continuous function. This function can be seen as a
parametrization of time t. Let u = ∂x/∂τ be the velocity field with respect to τ . Note
that by the chain rule we can relate v to u via v = aτ̇u. The position x of a particle
originating in q can be related to the reparametrized velocity u via

x = q + s = q +

∫ τ(t)

0
u dτ.

The Euler equation comes in by taking the Lagrangian derivative of u with respect to
τ ,

du

dτ
=
∂u

∂τ
+ (u · ∇x)u =

1

aτ̇
(Bu−∇xφ−

1

(1 + δ)ρu
∇xP )

with B = −(2aȧτ̇ + a2τ̈) = − ∂
∂t(a

2τ̇). The left hand side describes the acceleration of
the Lagrangian volume element with respect to τ , while the right hand side describes
the force exerted on the Lagrangian volume element.

3.5 Zel’dovich approximation

The fluid equations in the Lagrangian setting enable us to make a first-order Lagrangian
approximation of the solutions of the fluid equations. This approximation was derived
in 1970 by Zel’dovich [72] and is commonly denoted as the Zel’dovich approximation.

Theorem 1. For a universe in which the following assumptions are satisfied:

• the velocity u with respect to the growing mode τ = D+ has almost everywhere1 a
nonvanishing divergence, i.e. ∇x · u 6= 0 almost everywhere,

• the density is approximated by the divergence of the displacement vector, i.e. δ =
−∇q · s,

• the gradient of the pressure is vanishing, i.e. ∇xP = 0,

the evolution of the density perturbations is governed by the Zeldovich approximation

x(q, t) = q +D+(t)u.

Furthermore u is a constant gradient field. We define the velocity potential Ψ0 such that
u = −∇qΨ0.

1The set {q ∈ R3|∇ · u(q) = 0} has Lebesgue measure zero.
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Proof. With a vanishing pressure gradient, the Euler equation in the Lagrangian setting
is given by

du

dτ
=
∂u

∂τ
+ (u · ∇x)u =

1

aτ̇
(Bu−∇xφ).

The existence of a τ such that ∇xφ = Bu, would prove that u is a gradient field. We
will show that the growing mode D+ satisfies this condition. For such a τ , the Euler
equation reduces to

du

dτ
=
∂u

∂τ
+ (u · ∇x)u = 0

by which

s =

∫ τ(t)

τ(0)
u dτ = (τ(t)− τ(0))u = τ(t)u,

if we set τ(0) = 0. Substituting ∇φ = Bu in the Poisson equation

∇2
xφ = −4πGa2ρu∇q · s ≈ −4πGa2ρu∇x · s,

results in

−B∇x · u = −4πGa2ρuτ∇x · u.

Note that according to the chain rule, up to linear terms in ∂x/∂q the gradient ∇x · s =
∇q · s. Now since we assume that ∇x · u 6= 0 almost everywhere, this equation can be
reduced to

B = 2aȧτ̇ + a2τ̈ = 4πGa2ρuτ,

leading to the differential equation

τ̈ + 2
ȧ

a
τ̇ = 4πGρuτ.

This second order differential equation is identical to the differential equation of the
growing and decaying modes D± almost everywhere. Neglecting the decaying mode
results in the Zel’dovich approximation

x = q +D+u = q−D+∇xΨ

with D+ the growing mode described in the previous section and Ψ the velocity potential
of −u. Since in the Zel’dovich approximation the field u is constant along the flow, we
can see that Ψ is constant, i.e. Ψ = Ψ0 for some scalar field Ψ0.

The Zel’dovich approximation is an extremely simple approximation of gravity in
the sense that it only depends on the growing mode D+ containing the information
of the cosmology and a scalar field Ψ0 containing the information of the initial density
fluctuations of the universe. This thesis is largely devoted to understanding the statistics
of the geometry of Ψ0. In the description below, we show that the initial velocity
potential Ψ0 is proportional to the initial gravitational potential.
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In chapter 18 we will see a more direct prove of this theorem.
This approximation can be related to physical quantities via the peculiar velocity2

v = a
dx

dt
= −aḊ+∇Ψ

= −aD+H
aḊ+

ȧD+
∇Ψ

= −aD+Hf(Ω)∇Ψ,

with f the Peebles factor. In a 1980 Peebles found a approximate power law

f(Ωm) ≈ Ωγ
m

with γ = 0.55 + 0.05[1 + w(z = 0)], and w(z = 0) the current equation of state of dark
energy [51]. In the linear regime furthermore

v = −2f(Ω)

3ΩH

∇φ
a

by which

Ψ(q) =
2

3D+a2H2Ω
φ(x, t).

Combining this with the relation between δ and φ we see that in terms of Fourier modes,

û(k) = −i k

|k|2
δ̂(k).

The density of the Zel’dovich approximation is given by

1 + δ =
ρ(x, t)

ρu(t)
=

∥∥∥∥∂x

∂q

∥∥∥∥−1

= ‖δmn −D+(t)ψmn‖−1

=
1

(1−D+(t)λ1)(1−D+(t)λ2)(1−D+(t)λ3)

with λ1 ≥ λ2 ≥ λ3 the ordered eigenvalues of the deformation matrix

ψmn =
D+

a

∂2Ψ0

∂qm∂qn
=

2

3a3ΩH2

∂2Ψ0

∂qm∂qn
.

In figure 3.1 the Zel’dovich approximation is depicted. The initial conditions are sim-
ulated by a realization of a Gaussian random field with power spectrum P (k) = Ak−1

with some constant A. The Zel’dovich approximation describes a linear ballistic motion
of fluid elements, which do not interact with each other. The solution is appropriate as
long as fluid elements have not crossed. At the time of crossing, infinite densities occur
(with zero measure). This phenomenon is called shell crossing and forms the starting
point of they story of catastrophe theory in large-scale structure formation.

2The velocity of stars with respect to the expanding background.
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(a) P = Ak−1 and D+ = 3 (b) P = Ak−2 and D+ = 3

(c) P = Ak−1 and D+ = 6 (d) P = Ak−2 and D+ = 6

(e) P = Ak−1 and D+ = 9 (f) P = Ak−2 and D+ = 9

Figure 3.1: The Zeldovich approximation of the smoothened density fluctuations with
σ = 1 corresponding with a power law power spectrum with n = −1,−2.



37 3.5. Zel’dovich approximation

3.5.1 Truncated Zel’dovich approximation

In 1970 [72], Zel’dovich proposed the linear Lagrangian approximation for large-scale
structure formation, today well-known as the Zel’dovich approximation. In 1973 [73]
Zel’dovich argued that this approximation was only valid for universes in which large-
scale wavelength perturbations dominated over small-scale perturbations. Such universes
are sometimes denoted as the adiabatic or pancake model. In the 1980s, work indicated
that the Zel’dovich might be adequate in a more general setting (see for example Melott
et al. [47]). In 1993, Coles et al. [21] performed numerical simulations and compared
them with analytical models. They furthermore performed truncations on the initial
conditions, by removing the high Fourier modes of the initial conditions. The Zel’dovich
approximation with truncation turned out to be the best analytic model of large-scale
structure formation they considered. In 1994, Melott et al. [48] found that the Zel’dovich
approximation with a truncation can be improved by performing a Gaussian smoothing
on the initial conditions. Such a smoothing can be seen as a more subtle truncation
since is suppresses certain Fourier modes of the initial conditions instead of removing
them. This model is known as the truncated Zel’dovich approximation. In the sub-
sequent chapters we will always denote the truncated Zel’dovich approximation as the
Zel’dovich approximation.

N -body simulations of large-scale structure formation show that the evolution of short-
wavelength fluctuations is strongly influenced by long-wavelength fluctuations, whereas
long-wavelength fluctuations are not significantly influenced by small-wavelength fluc-
tuations, see Little, Weinberg and Park [42]. Now consider a model in which structure
formation evolves hierarchically. In such models the first structures to form have a short
wavelength. They are gradually followed by structures with longer wavelengths. The
Zel’dovich approximation is valid up to the mildly nonlinear stage. In a hierarchically
evolving universe, the Zel’dovich approximation will become invalid on short wavelengths
before the long-wavelength structures have formed. Since the long-wavelength structures
are not significantly influenced by short-wavelength structures, we can still probe the
long-wavelength structures in the large-scale structure by removing the short-wavelength
fluctuations with a Gaussian smoothing. For different stages of evolution, different scales
of structure are formed by which we need a different smoothing scale. This is the trun-
cated Zel’dovich approximation which is used throughout this thesis.

When we consider truncated random fields, we can see the truncation scale as an
extra parameter of the field. In the case with two spatial dimensions (with coordinates
(x, y)), the truncated random fields can be seen as a three dimensional field (with co-
ordinates (x, y, σ)), with σ the smoothing scale. This truncated space is often denoted
as scale-space. Analogously, the truncated Zel’dovich approximation in three spatial
dimensions (x, y, z) can be seen as a four dimensional field (x, y, z, σ) in scale-space. All
results obtained in the subsequent chapters will be based on the truncated Zel’dovich
approximation and are considered in scale-space.
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3.5.2 Adhesion model

As discussed in the previous section, the Zel’dovich approximation is a good approxima-
tion of the linear and mildly non-linear regime of structure formation. In the strongly
non-linear regime the approximation becomes invalid, since the particles do not interact
and moves straight through each other. This feature of the Zel’dovich approximation
is due to the assumption that the fluid is pressureless, and that we approximate the
density as δ = −∇ · s in which we ignore gravitational interactions. Many modifications
have been proposed to fix these shortcomings. Matarrese et al. [45] developed a variant
called the ’frozen flow approximation’ in which the peculiar velocity field is fixed at its
original value. Brainerd, Scherrer and Villumsen [13] developed an approximation which
assumed a constant gravitational potential. For a more complete discussion see Jones
[38]. The adhesion model modifies the Zel’dovich approximation by adding a artificial
viscosity term to mimic the gravitational interactions occurring after shell crossing. This
results in the a Euler equation in the Lagrangian setting of the form

du

∂D+
=

∂u

∂D+
+ (u · ∇)u = ν∇2u.

We consider solutions of this equation and take the limit ν → 0, by which the viscosity
term does not affect the Zel’dovich approximation before shell crossing but makes it
sticky at shell crossing. This equation is known as Burgers’ equation.

The Burgers’ equation was first introduced in 1940 by the Dutch mathematician
Johannes Marinus Burgers to model turbulence. The equation was introduced in the
context of large-scale structure formation in 1984 by Gurbatov, Saichev and Shandarin
[32] and was discussed extensively by Soviet astrophysicists.

One of the interesting features of the adhesion model is that it can be solved analyt-
ically. In the limit ν → 0

u(x, t) =
∑
α

x− qα
D+

jα exp

(
−Sα

2ν

)
/
∑
α

jα exp

(
−Sα

2ν

)
with qα the Lagrangian points minimizing the action

Sα = Ψ0(qα) +
(x− qα)2

2D+
,

jα =

[
det

(
δij +

∂2Ψ0

∂qi∂qj

)]−1/2∣∣∣∣
q=qα

,

as a function of q for fixed x. The process of minimizing the action results in qα such
that

x(qα, D+) = qα +D+∇qΨ0(qα)

S(x, D+,q) ≥ S(x, D+,qα)
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Zeldovich Adhesion

Figure 3.2: The adhesion model and the Zel’dovich approximation by Johan Hidding
[34]. The left and right panel depicts the Zel’dovich approximation and adhesion model
of an initial density field.

for all q. This can be interpreted by saying that the solution of Burgers’ equation is
equal to the Zel’dovich approximation before shell crossing and sticks to a structure
(with zero measure) after shell crossing. In figure 3.2 we can observe the evolution of
particles in the adhesion model. The initial conditions were generated form a Gaussian
random field with a power-law power spectrum. See the movie by Johan Hidding [35]
for an excellent illustration of the adhesion model.
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Chapter 4

Caustics in N-Body Simulations

In chapter 3 we studied the equations governing Newtonian large-scale structure for-
mation. We furthermore derived the Zel’dovich approximation. In this approximation
regions with infinite density, often called caustics, can be generated in a process called
shell crossing. In this chapter we use numerical simulations of one- and two-dimensional
models of the universe to investigate the significance of these caustics in the real universe.

4.1 Simulation of dark matter

With the increase of computer power in last decades, numerical simulation of the comov-
ing fluid equations has grown into a extensive field of research. In 2005, the Millennium
run simulated a cube with sides of about 2 billion light years containing about 20 million
galaxies. In 2010, the Bolshoi simulation and in 2014 the Illustrus simulation performed
similar cosmological three-dimensional N -body simulations containing besides the co-
moving fluid equations, gas dynamics and some star evolution (supernova explosions).
In this thesis we restrict our self to small simple one- and two-dimensional N -body simu-
lations. The features appearing in these simple simulations help us understand the more
involved three-dimensional simulations. In this section we describe the principles used
in the simulation. Appendix A contains the N -body routine used in this chapter.

4.1.1 Leap-Frog integrator

The numerical integration of the comoving fluid equations in this thesis has been per-
formed with the Leap-Frog integrator. The fluid is approximated by a grid of ’particles’.
Consider nd particles labeled by i ∈ (Z/nZ)d with d the number of spatial dimensions
of the simulation. The particles are initially positioned on a cubic grid. The initial
positions and momenta are

xi,0 =
L

n
i, pi,0 = 0,

with L the length of the sides of the box. The Leap-Frog integrator starts with a
displacement according to the Zel’dovich approximation followed by iterations over so-

41
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called drifts and kicks. The positions and momenta of the particles are not evaluated
at the same time steps, i.e., the positions are evaluated at times t = ida whereas the
momenta are evaluated at times t = (i + 1

2)da for i ∈ N. The positions overtake the
momentum after which the momenta overtakes the positions in time. This property gives
the Leap-Frog integration its name. The integrator is often used since it is reversible in
time and enforces conservation of energy on the solutions.

4.1.2 The Zel’dovich approximation

The initial fluctuations in the matter density are modeled with a realization of a Gaus-
sian random field δ ∈ (Rn)d. The initial displacement of the particles is performed
according to the Zel’dovich approximation. The velocity potential is computed with
discrete Fourier transforms

Φ = F−1

(
1

k2F(δ)

)
,

with F and F−1 respectively the Fourier and the inverse Fourier transform. The velocity
ui a computed with a discrete gradient of the potential. We displace the positions by a
time step da and the momenta by a time step 3

2da resulting in new position and velocity

xi,1 =xi,0 + daui pi,3/2 =
3

2
daui.

4.1.3 The drift

The drift approximates the differential equation

∂x

∂t
=

p

a2
⇒ ∂x

∂a
=

p

a2ȧ

and results in the displacement

xi,t+1 = xi,t +
da

a2ȧ
pi,t+1/2,

with ȧ given by the Friedmann equations

ȧ = H0a
√

ΩΛ + Ωma−3 + (1− ΩΛ − Ωm)a−2.

4.1.4 The kick

The kick approximates the differential equation

∂p

∂t
= −∇φ⇒ ∂p

∂a
= −∇φ

ȧ
.
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We start with a mass deposition of the positions on a regular grid using a Cloud in
Cell algorithm CIC, described below. Using the mass deposition, we approximate the
gravitational potential

δ =CIC[xi,t]m− 1

φ =
3

2
ΩmH

2
0F−1

(
1

k2F(δ)

)
.

We subsequently compute a discrete gradient of the potential and interpolate the poten-
tial on the positions of the particles acc. This results in the kick

pi,t+3/2 = pi,t+1/2 −
da

ȧ
acc.

4.1.5 Mass deposition

For the mass deposition we us a Cloud in Cell algorithm. In this algorithm we consider
a cubic grid consisting out of (2n)d points. Each particle xi,t resembles a cube, the
cloud, with side length L

2n . The mass deposition distributes the mass of the particles
on the cubic grid according to volume of the cube laying in the corresponding grid cell.
This algorithm forms an approximation of the density distribution as a function of the
position of the particles.

4.2 Caustics in one-dimensional simulations

In figure 4.1 we simulated the evolution of a fluctuation in a one-dimensional universe.
We start with a uniform density distribution and a velocity fluctuation of the form

v = xe−x
2
.

This can be seen in the upper phase-space plot. The particles are uniformly distributed
in space and have some initial velocity. The particles on the left side move to the right
whereas the particles on the right move to left side of the simulation. The curve in
phase-space is called the Lagrangian submanifold. In the upper right plot of figure 4.1
we see the density. The boxes are a histogram of the particles with respect to the spatial
dimension. This corresponds to the Eulerian density. The black line is the reciprocal
of the separation of neighboring points. This corresponds to the Lagrangian density.
When time evolves, the particles start to move. In the middle panel, we see that some
particles coming from the left collide with particles coming form the right side of the
simulation. This is called shell crossing. At this time the Eulerian density becomes large
while the Lagrangian density becomes infinite. The particles do not really collide since
we simulated a pressurless fluid. In the lower panel of figure 4.1 we see a further stage of
evolution. After shell crossing the particles have continued to move, and decelerated due
to the density peak in the middle of the simulation. Some particles have even turned
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around and generated a second density peak. In the simulation, the Lagrangian sub-
manifold will keep winding till the separation of the particles reaches the accuracy of
the simulation.

From the simulation described above, we observe points in space corresponding to one
unique point on the Lagrangian submanifold. These points form single stream regions.
Other points in space correspond to multiple points on the Lagrangian submanifold.
These points form the multi stream regions. The different stream regions are separated
by points with an infinite Lagrangian density. These points are called caustics. From
this simulation we observe the prominent role of the caustics in large-scale structure for-
mation. They correspond to the high density regions and highlight regions with enough
mass to form gravitationally bound objects. In more realistic N -body simulations, the
dark matter distribution will evolve as depicted in our simulation. The baryonic matter
will however experiences pressure and will shock at the time of first shell crossing. The
caustic corresponding to this event indicates a collapse which can potentially lead to the
formation of stars and galaxies.

4.3 Caustics in two-dimensional simulations

In figures 4.2 we see the evolution of density fluctuations with a power spectrum with
index −1

2 . The time evolution has been performed with the same Leap-Frog integrator
as the one-dimensional simulation described above, with a implementation of Johan
Hidding [33]. Initially the perturbations are small. In time the over dense regions exert
a stronger pull on the surrounding matter than under dense regions. The over densities
become clusters and filaments whereas the under dense regions become voids.

In the context of the corresponding four-dimensional phase-space, the evolution can
be seen as the stretching and twisting of a two-dimensional Lagrangian submanifold.
Initially, there are only single stream regions. Each point in space corresponded to a
unique point on the Lagrangian submanifold. As the submanifold however evolved, shell
crossing and multi stream regions appeared. This again induces infinite Lagrangian
densities and caustics. In filaments and in particular clusters, many shell crossings will
have occurred with many flows. We for this reason see that the caustics closely follow
the cosmic web. In this thesis, we approximate the density of nodes and length of the
line caustics.

The N -body simulation is again a good representation of the evolution of dark matter
in a two-dimensional universe. The baryonic matter will again have collapsed during first
shell crossing. Since starts are composed out of baryonic matter, we can expect stars
and galaxies to form in the nodes and middle of the filaments. This is in good agreement
with more involved N -body simulations and the SDSS and 2dF surveys.

4.4 Caustics in three-dimensional simulations

Caustics can also be found in three-dimensional N -body simulations. Since it is more
time consuming to perform three-dimensional N -body simulations and more difficult to
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Figure 4.1: Caustics in a one-dimensional N -body simulation
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(a) At a = 0.1 (b) At a = 0.3

(c) At a = 0.5 (d) At a = 0.7

(e) At a = 0.9 (f) At a = 1.0

Figure 4.2: Two-dimensional N-Body simulation of Gaussian matter perturbations [33]



47 4.4. Caustics in three-dimensional simulations

Figure 4.3: Cold dark matter and warm dark matter simulation of a halo.

visualize three-dimensional structures, we use the simulations and illustrations of Lovell
et al. [44]. Lovell et al. analyzed whether the ’to big to fail problem’ can be resolved
by considering a warm dark matter model in stead of the standard ΛCDM model. They
have resimulated one of the Aquarius N-body haloes with the power spectrum suppressed
at small scales.

The results of the resimulation are illustrated in figure 4.3. The left and right panel
contains the cold and warm dark matter simulation respectively. The cold dark matter
simulation looks messy with many small satellite halos circling the large central halo.
In the warm dark matter simulation, these small structures are suppressed. We instead
can see caustics encapsulating the center of the central halo. We see large sheets, thin
lines and singular points. A study of caustics in three-dimensions would analyze all
these individual features. In this thesis we will however restrict our self to one- and
two-dimensional models of the universe.
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Chapter 5

Lagrangian Catastrophe Theory

A small push often results in a small movement. A harder push results in a larger
movement. This incremental response to incremental stresses is very common in na-
ture. There are however situations in which a small push results in a dramatic response.
Consider, for example, the boiling of water, the collapse of a bridge or the capsizing of
a boat. Such a response is called a “catastrophe”. Although these situations are rare,
they are also typical. If we load a bridge with leaves, it is difficult to predict which
leave will make the bridge collapse. It is however, certain that the collapse will occur.
The study of systems in which catastrophes occur, is called catastrophe theory. This
theory can also be used to describe the occurrence of caustics in optical systems or the
filaments and clusters in the cosmic web. This branch of catastrophe theory emerges
from projections of high-dimensional surfaces to lower-dimensional spaces and is called
Lagrangian catastrophe theory.

The term catastrophe theory was introduced in 1972 by René Thom. The subject
can however be traced from Huygens, via Cauchy, to Poincaré, Morse, Whitney, Thom,
Zeeman to Arnol’d. This list is far from complete. Cayley, Maxwell and later Morse
derived a classification of nondegenerate critical points, which is now known as Morse
theory. Whitney proposed a classification of degenerate critical points. Thom extended
Whitney’s theorem. Thom’s articles became very popular by articles of Christopher
Zeeman on Thom’s classification. Arnol’d extended Thom’s classification, for more gen-
eral functions. Moreover, he applied the theory to Lagrangian maps, leading to the
branch of Lagrangian catastrophe theory. For a more elaborate description of the his-
tory and development of catastrophe theory see ‘Catastrophe Theory’ by Arnol’d [5]. In
this chapter we give an intuitive introduction to Lagrangian catastrophe theory. For a
formal discussion of this topic see chapter 7.

5.1 Caustics

Figure 5.1 shows a glass of hot water in which we steep tea. Initially the water is trans-
parent. In the process of steeping tea, a two-dimensional surface in a three-dimensional
space appears on the boundary of the colored and transparent water. We however ob-
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serve a projection of this surface onto a two-dimensional plane due to the limitations
of our eyes. Because of the projection, we observe lines in the projection at places at
which the surface is tangential to the line of sight. These lines, generally called caustics,
contain differentiable segments and points at which the curve follows a nondifferentiable
path. These points are called singular.

Lagrangian catastrophe theory plays a very prominent role in the problem of project-
ing manifolds onto lower-dimensional spaces. Consider a two-dimensional differentiable
manifold M embedded in the three-dimensional space R3. While the manifold is locally
diffeomorphic to R2 and is smooth at every point, the projection p of the manifold to
the two-dimensional plane R2, defined by p : (x, y, z) ∈M 7→ (x, y), can contain singular
features. There can exist points in the plane with an empty preimage p−1(x, y), and
points with a finite or even infinite number of points in the preimage. These regions are
separated by curves, commonly called caustics.

Lagrangian catastrophe theory classifies these curves and their singular points up to
coordinate transformations. Smooth curves are called fold catastrophes also known as
A2-lines. The singular points are cusp catastrophes also known as A3 points. The fold
and cusp catastrophes move over time and evolve, in which they pass through so-called
swallowtail and umbilical catastrophes respectively denoted by A4 and D4. According to
Lagrangian catastrophe theory, the A2, A3, A4, and D4 catastrophes are the only catas-
trophes occurring in the projection of a two-dimensional manifold onto a two-dimensional
plane (as in the example of steeping tea). In projections of higher-dimensional spaces
the Ak, Dk, E6, E7, and E8 catastrophes can additionally occur, with integer k ≥ 5. In
three-dimensional large-scale structure evolution the catastrophes up to k = 5 can occur.
In the subsequent sections of this chapter we describe several elementary catastrophes
pictorially and in dynamical situations. We follow the dynamical examples of Castri-
giano et al. [18]. The names of the catastrophes were proposed by Whitney and Thom.

5.2 A2: The fold catastrophe

For the fold catastrophe, consider a cylinder of unit radius and unit mass on a hill (see
figure 5.3). We denote the slope of the hill by α and let the center of mass C of the
cylinder be located at an inner circumference with a radius 0 < r < 1. Point P is the
contact point of the cylinder with the hill and Θ is the angle between the horizon and
the the line through the center of mass and the center of the cylinder. The potential
energy of the system is

V (Θ, α) = Θ sinα− r sin Θ + c(α)

with the gravitation constant g set to 1 and c : [0, 2π) → R. The critical points of this
potential can be found by equating

F (Θ, α) =
∂V

∂Θ
= sinα− r cos Θ
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Figure 5.1: The caustics of tea steeping
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Figure 5.2: The catastrophe surface MF of a cylinder on the hill
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Figure 5.3: Cylinder on hill illustrating the fold catastrophe

with zero. The system is in a equilibrium if and only if

(Θ, α) ∈MF =

{
(Θ, α) | cos Θ =

sinα

r

}
.

The catastrophe surface MF is illustrated in figure 5.2. For small α, the cylinder has two
equilibrium positions in which C is directly above P , one in which C is at the top and
one in which C is located bottom of the inner circumference (see figure 5.3a, and 5.3b).
If α increases smoothly, the two equilibrium positions will merge into one at α = arcsin r
(see figure 5.3c). For α > arcsin r no equilibrium position exists. As a consequence the
cylinder must rolls off the hill. This catastrophe is called the fold catastrophe. The name
fold refers to the shape of the equilibrium surface in configuration space (see figure 5.2).

5.3 A3: The cusp catastrophe

For the cusp catastrophe we consider the Zeeman catastrophe machine, devised by E.
C. Zeeman in 1969 [71]. Consider an elastic string of unit length attached to the origin
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Figure 5.4: Zeeman catastrophe machine

and a fixed point P on the boundary of a unit circle. Let the center of the circle M
be horizontally displaced by a distance a > 1 from the origin, so M = (a, 0). Attach
a second elastic string of unit length with the same elasticity to point P and a point
Q = (x, y). The point Q is an external parameter, similar to the angle α in the discussion
of the fold. Let Θ be the angle between PM and the horizontal axis. The system is
illustrated in figure 5.4. In this figure Θ = 90◦.

The potential energy of the Zeeman catastrophe machine as a function of Q and Θ
is

V (Θ, x, y) =

(√
17

4
− 2 cos Θ− 1

)2

+

(√
(x+ a)2 + y2 +

1

4
+ (x+ a) cos Θ− y sin Θ− 1

)2

.

The equilibrium positions of this system are given by the set

MF = {(Θ, x, y) |F (Θ, x, y) = 0},

plotted in figure 5.5a, with

F (Θ, x, y) =
∂V (Θ, x, y)

∂Θ

=−
((a+ x) sin Θ− y cos Θ)

(√
(a+ x) cos Θ + (a+ x)2 + y2 − y sin Θ + 1

4 − 1
)

√
(a+ x) cos Θ + (a+ x)2 + y2 − y sin Θ + 1

4

+ 2 sin Θ

(
1− 2√

17− 8 cos Θ

)
.

This set of equilibria turns out to be, up to local coordinate transformations, equivalent
to the simpler set

M̃F = {(Θ, x, y) | 4Θ3 − 2xΘ + y = 0}.
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(a) The set of equilibria of the Zeeman catas-
trophe machine with coordinates (x, y,Θ).
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(b) The cusp caustic of the Zeeman catastrophe
machine

Figure 5.5: Zeeman catastrophe machine

A proof of the equivalence can be found in chapter 7.

From figure 5.5a, we can see the catastrophe behavior by gradually changing the
position of Q = (x, y). Starting with a point Q in the upper right quadrant, there is just
one equilibrium position of P . This can be seen in figure 5.5a from the fact that there
is one point in MF of the form (Θ, Q). While lowering Q to the x-axis, there comes
a moment at which there exist two equilibrium positions, i.e., two points of the form
(Θ, Q) ∈ MF . However, although there are two equilibria at this moment, the point P
will move gradually since we change Q slowly. Moving Q further down the x-axis, there
comes a moment the point P will have to jump to the other equilibrium position. For
this parameter Q there exists again only one point (Θ, Q) ∈ MF . This sudden jump is
called a catastrophe. From figure 5.5a we see that these catastrophes occur at points
where the tangential plane of the surface is parallel to the Θ-axis. In figure 5.5b we have
drawn the set

BF = {(6Θ2, 8Θ3) |Θ ∈ R},

where catastrophes can occur. The regular points of the curve correspond to fold catas-
trophes denoted by A2. The point where the curve is singular is called the cusp catas-
trophe denoted by A3.

The cusp catastrophe can also be illustrated by projections of a two-dimensional ma-
nifold embedded in R3 to the plane R2, see figure 5.6. In this thesis the surface will
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(a) lips bifurcation, in which two cusp catastrophes are created.

(b) Beak-to-beak bifurcation, in which two cusp catastrophes are annihilated

Figure 5.6: Cusp catastrophe, illustrated by Johan Hidding [33]

always represent a sheet in phase space. First consider the creation of a cusp catastro-
phe via a so-called lips bifurcation. In the first image the projection is a one to one
mapping, allowing no formation of caustics. The manifold subsequently gets twisted till
the point, that the origin becomes singular. This is the A3 catastrophe. In the final plot
the surface has twisted further, leading to a second A3 catastrophe connected by two
A2 catastrophes. This configuration was first identified by Zel’dovich and is called the
Zel’dovich pancake.

In the second figure we have a so called beak-beak bifurcation in which two A3

catastrophes approaching each other. When they meet, they vanish and connect the A2

singularities. The two A3 singularities have merged and ceased to exist.
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Figure 5.7: Swallowtail catastrophe, illustrated by Johan Hidding [33]

5.4 A4: The swallowtail catastrophe

Although the swallowtail catastrophe exists in dynamical systems, it is most easily illus-
trated in a projection example. In the description above we saw that cusp catastrophes
can be created and annihilated. There are however more possibilities. In figure 5.7 two
cusps are being created by means of a swallowtail catastrophe. Although the swallow
tail catastrophe does not occur as often in nature as the cusp, it can easily be observed
in evolving systems. In such a system you can observe the process as illustrated in figure
5.7 and identify the moment at which a A4 catastrophe appears. The A4 catastrophe
will appear in this thesis due to the twisting of the phase space sheet.

5.5 D4: The umbilic catastrophes

Similar to the swallow tail catastrophe, the elliptic and hyperbolic umbilic catastrophes
respectively denoted by, D−4 and D+

4 , are catastrophes emerging in the evolution of cusp
catastrophes. In figure 5.8 and 5.9 we see the elliptic and hyperbolic umbilic catastrophes
appear when three cusp catastrophes move through each other.

5.6 Five-dimensional catastrophes

The fold, cups, swallowtail, and elliptic and hyperbolic umbilic, respectively denoted by
A2, A3, A4, D

−
4 , and D+

4 , are the only stable catastrophes occurring in the projection of
a two-dimensional manifold embedded in R3 onto the two-dimensional plane. In higher-
dimensional spaces more catastrophes can occur. However, the number of different
catastrophes remains finite. See chapter 7 for a full list. In this thesis we will consider
catastrophes occurring in two-dimensional large-scale structure formation. In this setting
the above mentioned catastrophes suffice. In three-dimensional large-scale structure
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Figure 5.8: Elliptic umbilic catastrophe, illustrated by Johan Hidding [33]

Figure 5.9: Hyperbolic umbilic catastrophe, illustrated by Johan Hidding [33]
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formation we must add the butterfly and parabolic umbilic catastrophe, respectively
denoted by A5 and D5.



Chapter 6

Caustics in the Zel’dovich Approximation

In chapter 3 we studied large-scale structure dynamics and the Zel’dovich approximation
as a linear Lagrangian approximation. A general initial density distribution can be
seen as a surface (Lagrangian submanifold) in phase space, in which each fluid element
is characterized by its initial (Lagrangian) position and evolved (Eulerian) position.
Initially, the density fluctuations are small. The projection of the phase space sheet
onto position space is one to one. When the density starts to evolve, the phase space
sheet will be stretched and twisted. During the evolution of the phase space sheet,
the projection onto position space can develop regions in which the projection maps
several fluid elements onto the same position, as seen in chapter 4. At the boundaries of
these regions are so-called caustics, which are described in catastrophe theory. In this
chapter we let the density distribution evolve according to the Zel’dovich approximation,
and study the occurrence of catastrophes. The conditions discussed in this chapter
for caustics in one- and two-dimensional models of the universes were first derived by
Arnol’d, Shandarin and Zel’dovich in 1982 [6].

6.1 Caustics in the Zel’dovich-approximation

The Zel’dovich approximation is given by the equation

x(t) = q−∇ΨD+(t).

This is a Lagrangian approximation, which means that we study the evolution of fluid
elements instead of density distributions. Using the conservation of mass we can obtain
the density distribution of the Zel’dovich approximation. In a d-dimensional universe,
the density field of the Zel’dovich approximation evolves as

1 + δ =
1

(1−D+(t)λ1) . . . (1−D+(t)λd)
,

with λ1 ≥ · · · ≥ λd the ordered eigenvalues of the deformation matrix

ψmn =
2

3a3ΩH2

∂2Ψ

∂qm∂qn
.

59
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For positive eigenvalues, one of the most striking features of the density formula are the
poles occurring at the times t satisfying

λi =
1

D+(t)
.

At these times two sheets move through each other by which the density locally spikes.
This feature is a so-called caustic and occurred at the moment of shell crossing. Note
that the Zel’dovich approximation is a first-order approximation, which strictly becomes
invalid during such an event. In the dark matter distribution nonlinear gravitational
interactions will start to be important. In baryonic matter, pressure will prevent these
infinite densities form occurring and lead to shock waves. However, even though the
Zel’dovich approximation fails to predict the precise evolution of these caustics, we be-
lieve that the caustics have a great potential to model the large scale features of the
cosmic web. They highlight the most dense regions in which stars and galaxies can start
to form.

Since the caustics are produced in the projection of the phase space sheet onto the
position space, the nature of the caustics can be described with Lagrangian catastrophe
theory. Arnol’d, Zel’dovich and Shandarin generated a complete classification of these
caustics in one- and two-dimensional Zel’dovich approximations. In the sections below,
we explain the classification.

6.2 Catastrophes in the one-dimensional Zel’dovich approximation

The example used here was introduced by Arnol’d. Consider the initial density pertur-
bation

δ = cos(πq),

for a universe ranging from q ∈ [−1, 1]. According the the Poisson equation the velocity
potential is

Ψ = − 1

π2
cos(πq),

up to physical constants.
According to the Zel’dovich approximation the system evolves as shown in figure 6.1.

At D+ = 0 the density is nearly uniform. At D+ = 1 shell-crossing first occurs. At this
time, ∂x

∂q = 0 at the point q = 0, leading to an infinite density. This feature is a cusp
catastrophe (A3). At time step D+ = 3, the cusp has split into two fold catastrophes
(A2). As time evolves the two fold catastrophes move apart.

First note that the concept of velocity after shell crossing is ill-defined between the
fold catastrophes. There are different sheets of matter flowing through each other. We
could define it to be the average density. This would however neglect the information in
the collapsed region governing the evolution. It would be better to use the phase-space
sheet in which the different matter flows remain fully resolved.



61 6.3. Catastrophes in the two-dimensional Zel’dovich approximation

In the example above we observe the creation of infinite densities. At D+ = 1 the
first A3 catastrophe appears in the origin. This corresponds with a local maximum of
the first eigenvalue of the deformation tensor in the origin. In one dimension the first
eigenvalue of the deformation tensor is equal to the second derivative of the velocity
potential, which is equal to the density perturbation

λ = ϕ =
∂2Ψ

∂q2
= cos(πq) = δ

at time D+ = 1
λ = 1. The A2 catastrophes correspond to the intersection of the first

eigenvalue of the deformation tensor λ with the level 1
D+

. Since smoothened realiza-
tions of Gaussian random fields are almost always Morse functions, any A3 catastrophe
corresponds with a maximum or minimum and any A2 catastrophe corresponds with a
level crossing in one-dimensional universes. The evolution of caustics in the Zel’dovich
approximation can, for this reason, be seen as a hierarchical process, in which a line of
height 1

D+
is lowered. Any maximum hitting the line is a A3 catastrophe splitting into

two A2 catastrophes. Any minimum hitting this line corresponds with an A3 catastrophe
in which two A2 catastrophes merge and vanish. The maxima and minima of the first
eigenvalue field λ, or in one-dimension the density, form an embryonic skeleton of the
structure formation.

It should be noted from the above example that two fold catastrophes were created
via a cusp catastrophe. The cusp only exists at one moment of time, whereas the fold
catastrophes exist at all times after shell crossing. This is a property of the dimension-
ality of the model of the universe and the catastrophe under consideration. In the above
example we have one spatial and one time dimension. The two-dimensional A2 catas-
trophes move in time whereas the three-dimensional A3 catastrophe only exists at fixed
instants. However, even though the A3 catastrophe does only occur at the creation of A2

catastrophes, the A3 catastrophe is stable. If we perturb the density distribution a bit
around the A3 catastrophe, it will move a bit in time and space but will never vanish.
In a two-dimensional universe we have two spatial and one time dimension. In these
universes A2 and A3 catastrophes move through the space whereas the four-dimensional
A4, D

−
4 and D+

4 catastrophes exist only at a point in space-time.

6.3 Catastrophes in the two-dimensional Zel’dovich approximation

For increasing numbers of dimensions of models of the universe, we can find more and
more qualitatively different catastrophes. In the two-dimensional case the set of distinct
catastrophes is given by A2, A3, A4, D4, in which A4 is called the swallowtail and D4 is
the umbilic catastrophe. The discussion of caustics in the two-dimensional Zel’dovich
approximation is however very similar to the one-dimensional case.

In two dimensions the velocity potential Ψ is a function from R2 to R. The defor-
mation tensor is a two-by-two tensor with, assuming Ψ is differentiable, three degrees of
freedom. There are two real eigenvalue fields λ1 and λ2 on which we impose the ordering
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Figure 6.1: Caustics in the one-dimensional Zel’dovich approximation
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Figure 6.2: The yellow and blue surfaces are the graphs of the first and second eigenvalue
fields by Johan Hidding et al. [33]. The points represent the A4 and D4 catastrophes
whereas the red lines represent the A3-lines.

condition λ1 ≥ λ2. The density in the two-dimensional Zel’dovich approximation is

1 + δ =
1

(1−D+λ1)(1−D+λ2)
,

by which first and second shell crossing occur at point q when λ1(q) = 1
D+

and λ2(q) =
1
D+

occur respectively. Note that not all points undergo shell crossing since D+ > L ≥ 0
for some lower bound L ∈ R depending on the cosmology, and the eigenvalue can assume
any real number.

Geometrically, the evolution of shell crossing can be viewed in terms of the eigenvalue
fields (see figure 6.2. Consider a horizontal plane at hight 1/D+. Initially the plane is
at infinity, since D+(t = 0) = 0. As time evolves the plane approaches the origin from
above. When the plane intersects the eigenvalue field, shell crossing occurs. The points
at which shell crossing occur at some time t form the A2 lines. The points on which the
eigenvector fields are parallel to the isocontours of the eigenvalue fields result in the A3

lines. In figure 6.3, we see a top view of the eigenvalue fields, and catastrophes. In the
subsequent sections, we analyze the role of the different catastrophes and connect them
via the Zel’dovich approximation to the eigenvalue fields of the deformation tensor.

6.3.1 A2: The fold catastrophe

The fold singularities A2 occur at isocontours of the eigenvalue fields λ1, and λ2 and
form curves. These curves are commonly called A2-lines and are lines of shell crossing
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Figure 6.3: A top and side view of the eigenvalue fields and caustics of figure 6.2, by
Johan Hidding et al. [33].
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Figure 6.4: Evolution of a fold A2 catastrophe in two dimensions

and surround collapsed regions of space (see figure 6.4). In nature these A2-lines are
supposed to be related to fronts of shock waves. The folds occurring first in the Zel’dovich
approximation correspond to the λ1 field. Folds appearing in collapsed regions of space
correspond with isocontours of the λ2 field, since λ1 ≥ λ2.

6.3.2 A3: The cusp catastrophe

In the Zel’dovich approximation, matter moves in the direction of the eigenvector fields
v1, and v2 of the deformation tensor, corresponding to the eigenvalues λ1 and λ2 respec-
tively. A cusp catastrophe is formed when the isocontour of λi for some positive value, is
parallel to the eigenvector vi, for some growing mode D+ (see figure 6.5). This condition
can formally be expressed as

vi(q) · ∇λi(q) = 0,

where λi(q) > 0. Points q satisfying this condition form curves called A3-lines. As
D+ increases, the cusps move through space. The A3-lines trace the paths of the A3
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Figure 6.5: Evolution of the cusp A3 catastrophe in 2 dimensions

catastrophes. The maxima and minima of the λi fields form special A3 singularities. At
the maxima shell crossing starts and fold catastrophes are created. At minima two fold
singularities annihilate.

6.3.3 A4: The swallowtail catastrophe

The swallowtail catastrophe occurs at the points in which an A3-line is parallel to the
eigenvector fields v1 or v2. The swallowtail catastrophe is the most intricate catastrophe
in the A series for 2-dimensional fields. This can be seen in figure 6.6.

6.3.4 D4: The umbilic catastrophe

The umbilic catastrophes come in two classes: the purse (hyperbolic) catastrophe D+
4

and the pyramid (elliptic) catastrophe D−4 . See figure 6.7 for the evolution of the umbilic
catastrophes in two dimensions. The umbilics occur when λ1 = λ2 in the deformation
tensor of Ψ0. The first and second eigenvalue fields become non differentiable due to the
ordering condition (λ1 ≥ λ2), resulting in the first catastrophes of the D-series. Note
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Figure 6.6: Evolution of the swallowtail A4 catastrophe in two dimensions
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Figure 6.7: Evolution of the hyperbolic umbilic D+
4 and elliptic umbilic D−4 catastrophe

in two dimensions

that this is the first condition in which two eigenvalues occur. The further classification
of the umbilics D+

4 and D−4 follows from the eigenvectors v1, and v2 at the umbilic. It
can be proven that an umbilic singularity always lies on an A3-line.

6.4 Catastrophe in the Zel’dovich approximation with vorticity

The velocity field in the Zel’dovich approximation is a potential field. By choosing a
velocity field instead of a gravitational potential we in general allow for vorticity. In this
way more general caustics can appear. See figure 6.8 for a generic velocity field.

Consider the velocity field u =
(
x2

2 + xy + 3x, 0
)

leading to figure 6.9. We clearly

see shell crossing occur and can observe that the area of the grid cells locally goes to zero.

This is the fold catastrophe. Now consider the velocity field u =
(

0,−x2y − y3

3 + 3y
)

.

This leads to the evolution illustrated in figure 6.10. We obtain a so-called Zel’dovich
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Figure 6.8: A generic velocity field with vorticity

pancake. The pancake consists of two A2-lines meeting in a singular point. These points
form the cusp catastrophe. In time the cusps move through space. The path they
trace in Lagrangian space is the A3-line. This process corresponds to the formation of
filaments in the Zel’dovich approximation. The previous velocity fields had only caustics
corresponding to the first eigenvalue field. When combining the A2 and A3 in the first
and second eigenvalue field we can obtain very complex structures. For the velocity

field u =
(
−x3

3 − xy
2 + 2x,−x2y − y3

3 + 3y
)

we obtain caustics in collapsed regions (see

figure 6.11). We furthermore observe many flow regions in which the preimage of the
projection goes to more than two points. When the velocity has a large vorticity, the
A2 and A3 catastrophes can generate patterns which do not occur in the Zel’dovich

approximation. For the velocity field u =
(
x2

2 + xy + 3x, xy + y2

2 + 2y
)

, we see A2

and A3 catastrophes (see figure 6.12). The conditions described above do not suffice
to predict the A3 catastrophes when the field has vorticity. For the four-dimensional
catastrophes we can in principle generate velocity fields. The resulting plots are however
not more insightful than the ones already presented in this chapter. For this reason we
do not include them here.
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Figure 6.9: Evolution of the fold A2 catastrophe
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Figure 6.10: Evolution of the cusp A3 catastrophe in two dimensions
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Figure 6.11: Evolution of the double cusp A3 catastrophe in two dimensions
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Figure 6.12: Evolution of the fold A2 and cusp A3 catastrophe with vorticity
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6.5 Embryonic caustic skeleton

The previous sections constructed a list and the physical appearance of catastrophes
occurring in large-scale structure formation. We furthermore developed a list of criteria
for catastrophes in the Zel’dovich approximation. We observed how the catastrophes are
related to the cosmic web and obtained conditions on the eigenvalue field of the defor-
mation tensor for A3, A4 and D4 points and A2- and A3-lines of the first eigenvalue field.
These points and curves can be seen as a embryonic skeleton of the Lagrangian space.
This skeleton gives a qualitative description of the cosmic web formed from fluctuations
in Lagrangian space. In chapter 4 we analyzed the relevance of caustics in N -body simu-
lations. In this section we compare the skeleton with the N -body simulation. In chapter
11 we consider a different embryonic skeleton based on Morse-Smale complexes.

In figure 6.13), we overlay the two-dimensionalN -body simulation, presented in chap-
ter 4, with the A3, A4 and D4 points and A3-lines. The N -body simulation is performed
on initial density fluctuations generated from a Gaussian random field with a power-law
power spectrum P (k) = k−1/2 without smoothing. The upper, middle, and lower two
frames correspond to an expansion of the universe with a scale factor a = 0.3, a = 0.6
and a = 1.0 respectively. The left frames give the embryonic skeleton in the initial
conditions. The density fluctuations are smoothed with a Gaussian at different length
scales to remove the small scale structure which which would have collapsed before the
time we are considering, i.e. we are using the truncated Zel’dovich approximation. The
right frames give the corresponding N -body simulation with Eulerian skeleton which is
constructed by evolving the skeleton in Lagrangian space with the Zel’dovich approxi-
mation. Note that, since we are considering a power-law power spectrum, time evolution
is very similar to zooming in. We could as well consider the different snap shots in time
as zoomins of the same N -body simulation. We see that the comparison works good on
large scales and starts to deviate on smaller scales.

In the figures we see a great agreement between the cosmic web and the caustics
skeleton. In the linear regime, it is difficult to observe the N -body skeleton, due to per-
fect alignment. In the mildly non-linear regime and non-linear regime small deviations
start to occur. Some structures are missed. Another problem is, that the A3-lines start
to wind in the clusters. Although this is what one would expect from the setting, it
is problematic for a comparison with observations. We can however introduce a weight
depending on the curvature of the A3-lines to correct for those problems.
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Chapter 7

Catastrophe Theory: Arnol’d’s
Classification Theorem

In this chapter we will give a more rigorous description of general and Lagrangian catas-
trophe theory. For a more pictorial description of Lagrangian critical points in low-
dimensional functions see chapter 5. The framework of the theory described below is
based on ’Catastrophe Theory’ of D. Castrigiano and S. Hayes [18], whereas the proofs
are based on Arnol’ds article (1972) [4]. In this chapter we illustrate the structure of
general and Lagrangian catastrophe theory. The theory is however involved and contains
many details. For this reason we prove the most insightful theorems and refer for the
more elaborate theorems to standard textbooks. A more complete treatment of catas-
trophe theory can be found in ”Singularities of Differentiable Maps, Volume 1 and 2”
by Arnol’d [8],[5]. All functions in this chapter are assumed to be smooth, real-valued,
and defined on open subsets U of Rn.

Definition 1. Let U be an open subset of Rn. A function f : U → R is smooth if it
has derivatives of arbitrary order. Let n be the dimension of f .

A point x ∈ U has coordinates x = (x1, . . . , xn). The gradient of f in point p ∈ U
is ∇f(p) = (∂if(p))ni=1 ∈ Rn with derivative ∂ki f(p) = ∂kf(p)/∂xki . Catastrophe theory
describes the behavior near critical points and classifies critical points of functions up
to local coordinate transformations.

Definition 2. A point p ∈ U is a critical point of f if ∇f(p) = 0.

According to elementary calculus, the nature of a critical point p of f is determined
by the Hessian matrix Hf(p) = (∂i∂jf(p))ni,j=1 ∈ Rn×n.

Definition 3. A critical point p ∈ U of function f is called nondegenerate if the Hes-
sian matrix Hf(p) is invertible. The point p is called degenerate if Hf(p) is singular.
Let the rank of p be defined as the rank of the Hessian matrix rank Hf(p), and let the
corank of p defined as n− rank Hf(p).

75
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In the subsequent sections of this chapter, ’simple’ critical points are further classified
by means of normal forms. The behavior of functions near simple critical points is
described using unfoldings and the critical points are restricted to Lagrangian critcal
points. The classification of Lagrangian critical points plays an important role in the
subsequent chapters of this thesis.

7.1 Classification of nondegenerate critical points

A nondegenerate critical point p of f is a maximum, minimum or saddle point. Functions
with only nondegenerate critical points are commonly denoted as a Morse functions. The
local behavior of a function f near a nondegenerate critical points is well described by
the Morse Lemma. Given a nondegenerate critical point p, Morse’s lemma states the
existence of a local coordinate transformation (diffeomorphism) which transforms f at
p locally to one of n+ 1 standard functions.

Lemma 1. (Morse’s lemma) Let f vanish at 0 ∈ U . The origin is a nondegenerate
critical point of f if and only if a local diffeomorphism ϕ at 0 exists with ϕ(0) = 0 such
that

f(ϕ(y)) = −y2
1 − · · · − y2

s + y2
s+1 + · · ·+ y2

n

holds around the origin. The integer s denotes the index of f at 0.

A global coordinate transformation (diffeomorphism) is defined as

Definition 4. Let U, V be open in Rn. A diffeomorphism is a local bijection ϕ : U →
V for which both ϕ and ϕ−1 are smooth maps.

A local coordinate transformation (local diffeomorphism) is defined as

Definition 5. A smooth map ϕ : U → Rn is a local diffeomorphism at point p
in U if an open neighborhood of V of p in U exists such that ϕ(V ) is open in Rn and
V → ϕ(V ), x 7→ ϕ(x), is a diffeomorphism.

Proof. Assume that there exists a local diffeomorphism ϕ such that

f(ϕ(y)) = −y2
1 − · · · − y2

s + y2
s+1 + · · ·+ y2

n

holds around the origin. Then the function f has a nondegenerate critical point at the
origin since

Dyf(ϕ(0)) = Dyf(0)Dyϕ(0) = 0

by which Df(0) = 0 and

D2f(ϕ(0)) = (Dϕ(0))tD2f(0)Dϕ(0)
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by which f is nondegenerate and has index s. We observe that the index is invariant
under local diffeomorphisms.

Conversely, let f be a function with a nondegenerate critical point in the origin with
vanishing function value. Choose local coordinates (x1, . . . , xn) around the origin. From
Taylor’s theorem we know that since f(0) = 0 there exist smooth function g1, . . . , gn
such that

f(x1, . . . , xn) =

n∑
k=1

xig(x1, . . . , xn)

and

∂f(0)

∂xi
= gi(0).

Since the origin is a critical point of f we see that gi(0) = 0 for all i = 1, . . . , n. Using
Taylor’s theorem on gk we know the existence of functions hki such that

gk(x1, . . . , xn) =

n∑
i=1

xihki(x1, . . . , xn).

Hence we can express f as

f(x1, . . . , xn) =
n∑

k,i=1

xixkhki(x1, . . . , xn).

or in symmetrized form

f(x1, . . . , xn) =
n∑

k,i=1

xixkHki(x1, . . . , xn)

with Hki = hki+hik
2 . However note that the function Hki gives half the k, i component

of the Hessian matrix since,

∂2f(0)

∂xk∂xi
= 2Hki.

Since the origin is a nondegenerate critical point of f , the matrix (hki)k,i is non-singular.
Suppose inductively there exist local coordinates u1, . . . , un in a neighborhood U1 of

0 such that

f = ±u1 ± · · · ± u2
r−1 +

∑
i,j≥r

uiujHij(u1, . . . , un).

By a linear change of the final r coordinates we can assume that Hrr 6= 0, since otherwise
the matrix (Hij)i,j would be singular. Let g(u1, . . . , un) =

√
Hrr(u1, . . . , un). By the



Chapter 7. Catastrophe Theory: Arnol’d’s Classification Theorem 78

(a) Maximum (b) Saddle point (c) Minimum

Figure 7.1: Morse normal forms of nondegenerate critical points in two dimensions

Inverse Function Theorem this g is smooth in an neighborhood U2 of 0 contained in U1.
Now making the coordinate transformation to (v1, . . . , vn) defined by

vi =ui for i 6= r

vr = g(u1, . . . , un)

(
ur +

∑
i>r

uiHir(u1, . . . , un)

Hrr(u1, . . . , un)

)

which is a local diffeomorphism by the Inverse Function Theorem, we have in new coor-
dinates

f = ±v1 ± · · · ± v2
r +

∑
i,j≥r+1

vivjHij(v1, . . . , vn).

Hence by induction we obtain the morphism ϕ of Morse’s lemma.

Note that the index of a critical point s is equal to the number of negative eigenvalues
of the Hessian Hf(p). The corank of a nondegenerate critical point is 0 whereas the
rank of a degenerate critical point is less then n.

Example 1. For n = 2, Morse’s lemma gives the normal forms −x2
1−x2

2, −x2
1 +x2

2 and
x2

1 + x2 representing the maximum, saddle point and minimum respectively (see figure
7.1).

7.2 Classification of simple degenerate critical points

Morse’s lemma classifies the nondegenerate critical points up to local diffeomorphism.
In a similar spirit, Arnol’d’s classification theorem classifies simple degenerate critical
points. Note that Arnol’d’s theorem is an extension of Thom’s classification theorem
of nondegenerate critical points of codimension at most 4.1 The notions of simple and
codimension will be formally defined in the proof.

1 Critical points of codimension at most 5 are simple.
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The proof of Arnol’d’s classification theorem is divided into four parts. In the first
part we prove the reduction lemma, which reduces the classification of nondegenerate
critical points of rank r to the classfication of nondegenerate critical points of rank
0. In the second part we prove the determinacy lemma which states to which order a
Taylor expansion around a critical point contains the qualitative behavior of a function
around that point. In the third part the notion of codimension is introduced, central to
Thom’s classification theorem. Finally in the fourth part Arnol’ds classification theorem
is proven.

7.2.1 The reduction lemma

Let p ∈ U be a critical point of f with rank r and corank n− r. If p is nondegenerate,
the rank is n and corank vanishes. If p is degenerate, the rank is less than n and the
corank does not vanish. According to the reduction lemma the study of degenerate
critical points with rank r can be reduced to the study of totally degenerate critical
points with vanishing rank.

Definition 6. Let r be an integer with 0 ≤ r < n, and let V be open in Rn−r with
0 ∈ V . Then f is reducible at the origin to a smooth function g : V → R if a local
diffeomorphism ψ at 0 ∈ Rn with ψ(0) = 0 exists as well as a normal quadratic form qsr
on Rr defined by qsr(x1, . . . , xr) = −x2

1 − · · · − x2
s + x2

s+1 + · · ·+ x2
r such that ψ(y) ∈ U

and

f(ψ(y)) = qsr(y1, . . . , yr) + g(yr+1, . . . , yn)

hold for all y ∈W × V , where W is open in Rr with 0 ∈W .

Lemma 2. (Reduction Lemma) If the origin is a degenerate critical point of f , then
f is reducible to a smooth function g with vanishing rank at the origin, such that the
origin is also a critical point of g. Note that r in the definition is equal to the rank of f .

Proof. For the proof of the reduction lemma we refer to chapter 3, theorem 2 of ’Catas-
trophe theory’ by Castrigiano and Hayes [18]. The proof follows from Morse’s Lemma
and the Implicit Function Theorem. The lemma was originally proven by D. Gromoll
and W. Meyer in 1969 for a more general setting [30].

Example 2. The function f(x1, x2) = x3
1 + x2

2 is reducible to g(x1) = x3
1 with vanishing

rank and a critical point at 0.

7.2.2 Determinacy

The proof of Arnol’d’s and Thom’s classification is based on Taylor expansions. In order
to use these expansions we first determine whether the qualitative behavior of a function
near a critical point is determined by the Taylor expansion around this point. We an-
alyze whether all smooth functions f with a coinciding Taylor polynomial are equivalent
under a smooth change of coordinates, near the critical point. Before we can formally
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define and find conditions for determinacy, we first have to define some differential and
algebraic geometric objects.

In study of critical points of a function f , we are only interested in f near the criti-
cal points. In this context we consider the notion of a germ of a map.

Definition 7. Let m,n ∈ N. On the set

{F : U → Rm : U open in Rn with 0 ∈ U and F smooth}

consider the following equivalence relation: If Fi : Ui → Rm for i = 1, 2 are in this set,
then F1 ∼ F2 means that on an open subset of U1 ∩ U2 containing 0, the maps F1, F2

coincide. The equivalence class [F ] of an element F is called the germ of F at 0. Let
En,m be the set of all such germs at the origin. If m = 1 we write E.

Example 3. The functions f1 : (−1/2, 1) → R, f1(x) = x2 and f2 : (−1, 1/2) →
R, f2(x) = x2 are equivalent and are elements of the germ [x2] ∈ E. On the subset
(−1/2, 1/2) = (−1/2, 1) ∩ (−1, 1/2), the functions f1 = f2 = x2.

The set of all germs at the origin E is a commutative and associative algebra over R
under a natural set of operations. For open sets U1, U2 of Rn and functions fi : Ui → R
for i = 1, 2 and α ∈ R let

• [f1] + α[f2] = [f1|V + αf2|V ]

• [f1][f2] = [(f1|V )(f2|V )],

with fi|V the restriction of fi to V = U1 ∩ U2. Note that E has an identity element
generated by the unit function [1] and that for [f ] there exists an inverse [f ]−1 if and
only if f(0) 6= 0.

In the remaining sections of this chapter a multi-index notation is used. For multi-
index ν = (ν1, . . . , νn) ∈ Nn0 , let |ν| = ν1 + · · · + νn, and ν! = ν1! . . . νn!. For x =
(x1, . . . , xn) ∈ Rn let xν = xν11 . . . xνnn and ∂ν = ∂ν1 . . . ∂νn . The Taylor polynomial of
order k of f at p ∈ U in multi-index notation is

T kf,p(x) =
∑

0≤|ν|≤k

∂νf(p)

ν!
(x− p)ν .

Using the multi-index notation we define the space of functions with coinciding Taylor
expansions, called the jet space Jk.

Definition 8. Let k be a nonnegative integer. Two germs [f ] and [g] in E are k-
equivalent if ∂νf(0) = ∂νg(0) for all ν ∈ Nn0 with |ν| ≤ k. The class of all germs
k-equivalent to [f ] is called the k-jet of f and is denoted by jk[f ]. The set of all k-jets
of germs in E is denoted by Jkn or Jk.
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Like the space of germs at the origin E , the jet space Jk carries a product operation
jk[f ] · jk[g] = jk[f · g], omitting the open sets. We furthermore define the a composition
of the jet space Jk with the group of germs of local diffeomorphisms leaving the
origin invariant, to formalize the notion of a local coordinate transformation on a jet.

Definition 9. For a local diffeomorphism ϕ of Rn at the origin with ϕ(0) = 0 let [ϕ] be
the corresponding germ. The collection of all these germs forms the group Gn or G of
local diffeomorphisms of Rn leaving the origin invariant.

Note that the composition of two elements [ϕ], [ψ] ∈ G is defined by the composition
[ϕ][ψ] = [ϕ ·ψ], the group G has a neutral element generated by the identity [id] and by
the properties of local diffeomorphisms each element [ϕ] ∈ G has an inverse [ϕ−1] ∈ G.

The group G acts on the germs E via the action

E × G → E , ([f ], [ϕ]) 7→ [f ][ϕ] = [f ◦ ϕ].

Note that for ϕ,ψ ∈ G we have ([f ][ϕ])[ψ] = [f ]([ϕ][ψ]) and [f ][id] = [f ]. This leads to
an equivalence of germs.

Definition 10. Two germs [f ], [g] ∈ E are equivalent, denoted by [f ] ∼ [g], if there
exists a [ϕ] ∈ G such that [g] = [f ][ϕ]. The orbit of [f ] under G is defined by

[f ]G = {[f ][ϕ] : [ϕ] ∈ G}

of all germs in E equivalent to [f ].

Example 4. The Morse lemma states that all germs of functions near nondegenerate
critical points lie in one of the orbits [qs,n]G, with 0 ≤ s ≤ n.

This enables us to define the determinacy of a germ in E .

Definition 11. Let k be a positive integer. A germ [f ] ∈ E is called k-determined if
every germ that is k-equivalent to [f ] is equivalent to [f ]. A germ is finitely determined
if k is finite. If [f ] is finitely determined, the smallest k for which [f ] is k-determined is
the determinacy of [f ] denoted by det[f ].

In the one-dimensional case the property has a simple interpretation

Lemma 3. A simple germ [f ] ∈ m1 has determinacy k if and only if k is the smallest
positive integer satisfying ∂k1f(0) 6= 0.

Proof. Let the germ [f ] have determinacy k. Since T kf 6= 0, a small integer l ≤ k

exists such that f (l)(0) 6= 0. Let ε be the sign of f (l)(0). Now [f ] ∼ [εl−1xl] since
its lth derivative is nonzero and det[εl−1xl] = l. The determinacy of f is equal to the
determinacy of [εl−1xl] since this property is invariant under local diffeomorphisms, i.e.
k = l. Conversely let k be the smallest integer satisfying f (k)(0) 6= 0. Now [f ] is
k-determined since T k−1

f = 0.
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Figure 7.2: The function f2 has a flat point in the origin

Constant functions and flat points are not finitely determined.

Example 5. All derivatives of the functions f1(x) = 0 and f2(x) = exp
(
− 1
x2

)
vanish

in the origin. This is called a flat point (see figure 7.2). No Taylor expansion at 0 can
distinguish f1 and f2.

The remaining part of this subsection is devoted to determining the determinacy of [f ].
For the formulation of a sufficient condition we define the ideals2 consisting of germs
with kth order zeroes at the origin.

mk
n = mk = {[f ] ∈ En|∂νf(0) = 0 for all |ν| < k}.

Note that mk is an ideal since mkE ⊂ mk. The ideal m is the only maximal ideal of
E since it consists of the set of all non-invertible elements of E . These ideals have a
hierarchical structure E ⊃ m ⊃ m2 ⊃ m3 ⊃ . . . but mk 6= mk+1 for all positive k. The
homogeneous polynomials of order k generate the ideal3 mk, i.e.,

mk = 〈xν ||ν| = k〉E .

Finally we define the Jacobi ideal J [f ].

Definition 12. The Jacobi ideal J [f ] of a germ [f ] ∈ E is the ideal of E generated by
the germs of the partial derivatives ∂if for i = 1, . . . , n, i.e.,

J [f ] = 〈∂1f, . . . , ∂nf〉E .

This leads to the theorem

Theorem 2. A germ [f ] ∈ E is k-determined if mk+1 ⊂ 〈m2J [f ]〉.

Proof. For the proof we refer to ’Catastrophe Theory’ by Castrigiano and Hayes [18].

2An ideal I of E is a additive subgroup of E such that for all i ∈ I, e ∈ E the product i · e ∈ I.
3The germs [fi] generate an ideal I ⊂ E if I = 〈fi| for all i〉E = [f1]E + [f2]E + . . . .
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Formally the condition is also necessary, by which [f ] is k-determined if and only
if mk+1 ⊂ 〈m2J [f ]〉. In the following example the k-determinacy of all polynomials
needed in the rest of this chapter is proven.

Example 6. The following polynomials are k-determined at 0

polynomial determinacy dimension n

±xk k 1

0, x2y, x3 ∞ 2

x2y ± y3 3 2

x2y ± ys s 2

Proof. Since the origin of the forms 0, x3 and x2y is a not isolated critical point, we see
that they are not finitely determined. The forms x2y ± y3 are 3-determined. Transform
the cubic forms by a coordinate transformation to f = x2y± 1

3y
3. Now since ∂xf = 2xy,

∂yf = x2 ± y2 and

y4 = (x2 ± y2)(±y2)∓ 2xy(xy/2) y3x = 2xy(y2/2)

x2y2 = 2xy(xy/2) yx3 = 2xy(x2/2)

x4 = (x2 ± y2)x2 ∓ 2xy(xy/2)

and m4 = 〈xν ||ν| = 4〉E = 〈y4, y3x, y2x2, yx3, x4〉E we see that m4 ⊂ 〈m2J [f ]〉. This
concludes the proof.

7.2.3 Simple critical points and codimension

The main difference between Thom’s and Arnol’d’s classification theorems comes from
the use of the property simple and codimension. Thom used the notion codimension.

Definition 13. Let [f ] be a germ in m2. Then the codimension of [f ] is cod[f ] =
dim m/J [f ].

Colloquially the codimension counts the minimal number of parameters to perturb f
and get all qualitative different behaviors of f . This concept is formalized in the section
about unfoldings. Note that for a nondegenerate germ [f ] ∈ E , we have m = J [f ]
by which cod[f ] = 0. Conversely we can prove that cod[f ] = 0 implies that f has a
nondegenerate critical point at 0. A germ [f ] with nonzero codimension is degenerate.
Thom used the fact4 that all degenerate germs in E with codimension at most 5 have
rank 1 or 2.

Arnol’d used the slightly more general5 notion simple.

Definition 14. An orbit V of the action G on E is simple if a sufficiently small neigh-
borhood of any point v ∈ V contains only a finite number of orbits.

4Thom originally used codimension at most 4.
5It can be proven that all critical points of codimension at most 5 are simple.
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Example 7. A germ [f ] of a flat point (for example f = exp
(
− 1
x2

)
is not simple since

all orbits [xν ]G lie arbitrarily close to [f ]G. Such a point has nonzero moduli.

Analogously to the codimension, Arnol’d proved that the property simple restricts
the corank of germs in E .

Lemma 4. The corank of a simple germ does not exceed two.

Proof. This is the property proven by Arnol’d to extend Thom’s classification theory.
For the proof we refer to Arnol’d 1972 lemma 4.2 [4].

7.2.4 Arnol’d’s and Thom’s classification theorem of critical points of codimension
at most 4

The previous statements allow us to prove the classification theorem. The necessary
determinacy of polynomials has been proven in example 6. In the upcoming lemmas
and theorem, we state that the normal forms Ak, Dk and Ek are simple and give their
codimension. The property simple will be proven in the section about unfoldings. The
codimension of the normal forms can directly be calculated and is denoted for complete-
ness. In this subsection we first consider germs with corank 1 after which germs with
corank 2 follow.

For simple germs of corank 1 we obtain the A (linear) series.

Lemma 5. A simple germ with a critical point of corank 1 can be reduced to one of the
normal forms of type A±k for some k ≥ 2, given by

±xk+1
1 + qs,n−1(x2, . . . , xn),

with codimension k − 1.

Proof. Let [f ] ∈ E be a simple germ with corank 1. By the reduction lemma, choose
coordinates x such that

f = g(x1) + qs,n−1(x2, . . . , xn),

for some g ∈ m3. The function g cannot have a flat point at the origin (in which all
derivatives vanish), since otherwise the germ of f is not simple since all orbits of the
form [xl1 + qs,n−1(x2, . . . , xn)]G lie arbitrarily close to [f ]G. Let k ≥ 2 be the smallest
integer for which ∂k+1

1 g(0) 6= 0, by which [g] ∼ [±xk+1] since the Taylor expansion of g
consists of a term proportional to xk+1 and the germs [±xk+1] are (k + 1)-determined.
Hence

[f ] ∼ [g + qs,n−1] = [g] + [qs,n−1] ∼ [±xk+1] + [qs,n−1] = [±xk+1 + qs,n−1],

by which

±xk+1
1 + qs,n−1(x2, . . . , xn),

is a normal form of f .
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For the classification of simple germs with corank 2 we first classify cubic forms of
the form ax3 + bx2y + cxy2 + dy3 ∈ R[x, y].

Lemma 6. Let p be a cubic form on R2. There is a linear coordinate transformation τ
on R2 such that p ◦ τ is equal to exactly one of the forms

x2y ± y3, x2y, x3, 0

The cubic forms x3±xy2 are 3-determined whereas 0, x3, x2y are not finitely determined.

Proof. The five forms are unique, i.e., no two forms can be transformed into each other
by a linear coordinate transformation τ : R2 → R2, τ(x, y) = (αx + βy, γx + δy), with
αδ − βγ 6= 0. First note that the null form is invariant under τ and therefore linearly
inequivalent to the other four forms. Now consider the zero set of the four remaining
forms:

form zero set set of critical points

x2y + y3 {y = 0} {0}
x2y − y3 {y = 0} ∪ {x = y} ∪ {x = −y} {0}
x2y {x = 0} ∪ {y = 0} {x = 0}
x3 {x = 0} {x = 0}

Only the zero sets of x2y+ y3 and x3 can be transformed into each other by τ . However
the set of critical points of x2y+y3 and x3 cannot be transformed into each other. Hence
the five cubic forms are pairwise linearly inequivalent.

Now we show that every cubic form p on R2 is linearly equivalent to exactly one of
the 5 standard forms. Let p = ax3 +bx2y+cxy2 +dy3 and p′ = a′x3 +b′x2y+c′xy2 +d′y3

with p′ = p ◦ τ , which is equivalent to

a′ = aα3 + bα2γ + cαγ2 + dγ3

b′ = 3aα2β + b(2αβγ + α2δ) + c(2αγδ + βγ2) + 3dγ3δ

c′ = 3aαβ2 + b(2αβδ + β2γ) + c(2βγδ + αδ2) + 3dγδ2

d′ = aβ3 + bβ2δ + cβδ2 + dδ3

Choose τ such that d′ = 0. If a = 0, we get α = δ = 0 and β = γ = 1. If a 6= 0, then
α = δ = 1, γ = 0, and let β be a real zero of the cubic equation aβ3 + bβ2 + cβ + d = 0.
Consequently, we may start with a cubic form p(x, y) = ax3 + bx2y + cxy2.

Now choose τ such that b′ = d′ = 0. If c 6= 0, then such a τ is found by setting
α = δ = 1, β = 0 and γ = −b/2c. When c = 0, b 6= 0, let α = 0, β = γ = 1, δ = −a/b,
and for c = b = 0 set β = 0. Thus it is no restriction to assume that both b and d vanish,
i.e., p(x, y) = ax3 + cxy2.

By scaling x and y we see that every cubic form p can be transformed to exactly one
of the 5 cubic forms.

Lemma 7. The germs of the normal cubic forms on R2 are mutually inequivalent
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Proof. Let p and q be two different normal cubic forms on R2. For any [ϕ] ∈ G2, the
homogeneous part of degree 3 of [p][φ] is given by [p][τ ], where τ is the linear part of φ.
So, if [p] and [q] would be equivalent they would also be linearly equivalent. This is in
contradiction with the previous lemma.

For simple germs of corank 2 we obtain the D (orthogonal) series and the special
series E6, E7 and E8.

Lemma 8. A simple germ with a critical point of corank 2 with cubic form x2
1x2 or

x2y ± y3 (for some coordinate sytem) can be reduced to one of the normal forms of the
type D±k for some k ≥ 4, given by

x2
1x2 ± xk−1

2 + qs,n−2(x3, . . . , xn),

with codimension k − 1.

Proof. Let [f ] be a simple germ with a critical point of corank 2 and cubic form equivalent
to x2

1x2 at the origin. By the reduction lemma, we can choose coordinates such that
f = g(x1, x2) + qs,n−2(x3, . . . , xn), with g ∈ m3. The 4-jet of g is of the form g(x, y) =
x2y + ϕ4(x, y) with

ϕ4(x, y) = ay4 + 2bxy3 + cx2y2 + dx3y + ex4

= ay4 + 2bxy3 + x2ψ,

ψ = ex2 + dxy + cy2.

A local diffeomorphic transformation (x, y) 7→ (x − by2, y − ψ) reduces g to the form
g = x2y + ay4 mod m5. For this form, we distinguish the situation a = 0 and a 6= 0.
If a 6= 0, then [g] ∼ [x2y + ay4] which is 4-determined. In the case a = 0, the 4-jet of
g can be reduced to the form x2y and the 5-jet has the form x2y + ϕ5(x, y) with ϕ5

homogeneous of degree 5 in x and y.
Now assume that the s-jet of g is of the form g(x, y) = x2y + ϕs(x, y) and ϕs

homogeneous of degree s of the form

ϕs(x, y) = ays + 2bxys−1 + x2ψ(x, y),

for some ψ ∈ ms−2. Performing a local diffeomorphic transformation (x, y) 7→ (x −
bys−2, y−ψ) reduces g to the form g = x2y+ays mod ms+1. For this form we distinguish
the situation a = 0 and a 6= 0. If a 6= 0, then [g] ∼ [x2y+ ays] which is s-determined. In
the case a = 0, the s-jet of g can be reduced to the form x2y, by which the (s + 1)-jet
of g is of the form g = x2y + ϕs+1(x, y).

Starting with s = 4 and repeating the procedure for s→ s+ 1 if a = 0, this protocol
has to terminate for some finite s. If the process would continue indefinitely, the orbit
[f ]G lies arbitrarily close to all orbits of the form [x2y+xk]G. This forms a contradiction
with the assumption that [f ] is simple.

Hence there exists a s ≥ 5 such that [g] ∼ [x2y±ys−1] by which [f ] ∼ [x2
1y±ys−1].
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Lemma 9. A simple germ with a critical point of corank 2 with cubic form x3
1 can be

reduced to one of the normal forms of type Ek for some k = 6, 7, 8, given by

E6 : x3
1 ± x4

2 + qs,n−2(x3, . . . , xn)

E7 : x3
1 + x1x

3
2 + qs,n−2(x3, . . . , xn)

E8 : x3
1 + x5

2 + qs,n−2(x3, . . . , xn)

with codimension k.

Proof. For a proof we refer to Arnol’d 1972 lemma 6.1 [4]. The proof goes similar to the
previous two proofs.

Theorem 3. A simple germ of a critical point can be reduced to one following normal
forms. For nondegenerate critical points,

qsn(x1, . . . , xn), 0 ≤ s ≤ n cod [qsn] = 0.

For degenerate critical points

Ak :± xk+1
1 + qs,n−1(x2, . . . , xn) k ≥ 1 cod Ak = k − 1

Dk :x2
1x2 ± xk−1

2 + qs,n−2(x3, . . . , xn) k ≥ 4 cod Dk = k − 1

E6 :x3
1 ± x4

2 + qs,n−2(x3, . . . , xn) cod E6 = 6

E7 :x3
1 + x1x

3
2 + qs,n−2(x3, . . . , xn) cod E7 = 7

E8 :x3
1 + x5

2 + qs,n−2(x3, . . . , xn) cod E8 = 8

Proof. This proof follows from Morse’s lemma and lemmas 3,4 and 5.

7.2.5 Unfoldings

Degenerate critical points are unstable, in the sense that a perturbation of the function
near the critical point removes it or lets if fall apart into other critical points, ultimately
resulting in nondegenerate critical points. In the previous chapter we introduced the
fold (A2) and cusp (A3) catastrophe by means of physical examples. In these examples,
the catastrophes existed at a point in configuration space and could only be found by
considering the function near the critical point. In the system with the cylinder on the
hill and the Zeeman catastrophe machine, the angle Θ is the state space describing the
dynamics whereas the angle α and the point Q are external parameters perturbing the
system. This classification of the parameters is of course a bit artificial. In this section we
will discuss these deformations of the system systematically for all simple normal forms
discussed in the previous section. A deformation will be denoted by an unfolding. The
proofs of the statements given in this section can be found in Arnol’d and Castrigiano.

Definition 15. Let [f ] ∈ E. A germ F ∈ En+r is an r-parameter unfolding of [f ], if
F (x, 0) = f(x) for all x in a neighborhood of the origin of Rn. The space Rn of the first
arguments of F is called the state space. The space Rr of the second argument s of F is
called the space of external parameters.
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For a given germ in E a vast amount of unfoldings are possible. In order to determine
the ’quality’ of an unfolding, we introduce the notion that an unfolding G can be induced
by another unfolding F .

Definition 16. Let [F ] ∈ En+r be an unfolding of [f ] ∈ E. The unfolding [G] ∈ En+s is
induced by [F ] if there exist germs [ϕ] ∈ mn+s,n, [ψ] ∈ ms,r and [γ] ∈ ms such that

• ϕ(y, 0) = y

• G(y, v) = F (ϕ(y, v), ψ(v)) + γ(v)

for all (y, v) in an open neighborhood of the origin in Rn+s.

By the definition of induced unfoldings, an unfolding G induced by an unfolding F
is diffeomorphic to G near the critical point then F does. Using this notion we can
consider the most efficient unfolding of a germ [f ] ∈ E .

Definition 17. An unfolding of a germ in E is versal6 if it induces all unfoldings of
the germ. If the number of external parameters of a versal unfolding is minimal, we call
the unfolding universal. Arnol’d denotes universal unfoldings by miniversal unfoldings.

The existence of a universal unfolding is described by the Fundamental Theorem
on Universal Unfoldings not proven here, but available in Castrigiano. The Funda-
mental Theorem on universal unfoldings states that a universal unfolding of a germ [f ]
exists if and only if [f ] has finite determinacy or equivalently codimension. If the uni-
versal unfolding of [f ] exists, it can be explicitly generated by calculating the quotient
space m/J [f ] and picking representatives [g1], . . . , [gr] of the cosets. The germ of the
resulting function

F (x, u) = f(x) + u1g1(x) + · · ·+ urgr(x)

can be proven to be a universal unfolding of the germ [f ]. Note that the codimension of
[f ] equals the number of external parameters in the universal unfolding.

Arnol’d calculated versal unfoldings of the standard catastrophes Ak, Dk and Ek.

Theorem 4. For the versal deformation for the germs of functions Ak, Dk and Ek one
can take the following k-parameter deformations.

Ak : ±xk+1
1 + qs,n−1(x2, . . . , xn) + uk−1x

k−1
1 + uk−2x

k−2
1 + · · ·+ u0

Dk : x2
1x2 ± xk−1

2 (x3, . . . , xn) + qs,n−2 + uk−1x1 + uk−2x
k−2
2 + · · ·+ u1x2 + u0

E6 : x3
1 ± x4

2 + qs,n−2(x3, . . . , xn) + u5x1x
2
2 + u4x1x2 + u3x

2
2 + u2x2 + u1x1 + u0

E7 : x3
1 + x1x

3
2 + qs,n−2(x3, . . . , xn) + u6x1x2 + u5x

4
2 + u4x

3
2 + u3x

2
2 + u2x2 + u1x1 + u0

E8 : x3
1 + x5

2 + qs,n−2(x3, . . . , xn) + u7x1x
3
2 + u6x1x

2
2 + u5x1x2 + u4x

3
2

+ u3x
2
2 + u2x2 + u1x1 + u0

6The term versal comes form the intersection of the terms universal and transversal.
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Proof. For the proof we refer to Arnol’d 1972 [4].

One can calculate how the simple catastrophes decompose into other catastrophes
under the influence of unfoldings. Arnol’d has found specific one-parameter families of
perturbations that let the Ek catastrophe decompose into Ek−1, Ak−1, Ak−2 catastrophes,
the Dk catastrophe decompose into Dk−1, Ak−1 catastrophes and the Ak catastrophe
decompose into the Ak−1 catastrophe. This forms a proof of a structure of catastrophes
depicted in the figure below [4].

A1 A2 A3 A4 A5 A6 A7 A8 A9 . . .

D4 D5 D6 D7 D8 A9 . . .

E6 E7 E8

7.3 Lagrangian catastrophe theory

Lagrangian catastrophe theory can be developed alongside general catastrophe theory.
General catastrophe theory considers critical points of functions in C∞ up to local dif-
feomorphisms. Lagrangian catastrophe theory considers critical points in Lagrangian
maps, up to Lagrangian equivalences. This branch of catastrophe theory was initiated
by Arnol’d, who proved the first classification theorem.

Lagrangian maps have applications in many optical and dynamical systems. The
corresponding catastrophe theory can be applied to the formation of caustics in optical
systems, deformations of images in gravitational lenses and structure formation. In this
thesis we concentrate on the last application. In this section we describe symplectic ge-
ometry, Lagrangian submanifolds, Lagrangian maps and the classification of Lagrangian
maps.

Let V be a finite-dimensional real vector space. A bilinear form b on V is a bilinear
map

b : V × V → R,

in the sense that the map u 7→ b(u, v) for fixed v and v 7→ b(u, v) for fixed u are both
linear maps. The bilinear form b is called nondegenerate if the condition b(u, v) = 0 for all
v implies u = 0. Furthermore the bilinear form is called symplectic if it is antisymmetric,
i.e. b(u, v) = −b(v, u) for all u, v ∈ V . A nondegenerate bilinear symplectic form on V
will be denoted by ω.

For a manifold M , the tangent space TxM is spanned by the derivative at t = 0 of
all curves γ : U ⊂ R→M through x ∈M with 0 ∈ U and γ(0) = x. The tangent space
TxM is a vector space. Let Ω2(M) denote the space of smooth 2-forms on M . A 2-form
α ∈ Ω2(M) assigns to each point x ∈M an antisymmetric 2-form αx of degree p on the
tangent space TxM varying smoothly with x. The 2-form α is nondegenerate if αx is
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nondegenerate on TxM for all x ∈M . The 2-form is called closed if dα = 0, with d the
exterior derivative. For a smooth map φ : M → N of smooth manifolds M,N we define
the pullback of the smooth p-form α on N under φ as the smooth p-form φ∗α by

(φ∗α)x(v1x, . . . , vpx) = αφ(x)((Txφ)v1x, . . . , (Txφ)vpx),

with Txφ : TxM → Tφ(x)N the tangent map of φ at x and v1x, . . . , vpx ∈ TxM . For a
more elaborate explanation of symplectic geometry an above definitions see Arnol’d et
al. [8].

Using these notions we now define the symplectic manifold.

Definition 18. A symplectic manifold is a pair (M,ω), with a smooth even-dimensional
manifold M , and a nondegenerate closed symplectic 2-form ω ∈ Ω2(M).

In this thesis, the symplectic manifold is composed out of the Lagrangian (initial) and
Eulerian position (after some time t). In n dimensions we therefore have M = Rn×Rn,
with (q,x) ∈M representing the initial position q and final position x after some time
t. According to the theorem of Darboux, all symplectic structures on a manifold M
with fixed dimension are locally equivalent. In the context of this paper, the standard
symplectic structure ω = dq ∧ dx is used.

A Lagrangian submanifold L of (M,ω) is a maximal-dimensional submanifold on
which the symplectic structure ω vanishes.

Definition 19. A Lagrangian manifold L ⊂ M is a subset with half the dimension of
the symplectic manifold (M,ω) on which the 2-form induced by the inclusion i : L→M
vanishes, i.e., i∗ω = 0.

This manifold M can be seen as a Lagrangian fibration (a fibration with Lagrangian
fibers), with projection map π : M → B = Rn, (q,x) 7→ x, mapping phase space M to
Eulerian space B. This leads to the notion of Lagrangian maps.

Definition 20. Given a symplectic manifold (M,ω) with projection π,M → B, a La-
grangian submanifold L ⊂ M has a corresponding Lagrangian map defined as π ◦ i :
L → (M,ω) → B, with i : L → (M,ω) the inclusion map. The Lagrangian map of a
Lagrangian manifold L is a projection onto the base B.

As in general catastrophe theory, we can consider the germs of Lagrangian maps.
These germs are commonly denoted by Lagrangian map germs [π ◦ i]. In general catas-
trophe theory, the germs are related by local diffeomorphism. In Lagrangian catastrophe
theory, Lagrangian map germs are related by Lagrangian equivalence.

Definition 21. Two Lagrangian maps (π1 ◦ i1) : L1 → M1 → B1 and (π2 ◦ i2) :
L2 →M2 → B2 are Lagrangian equivalent if diffeomorphisms σ, τ and ν exist such that
τ ◦ i1 = i2 ◦ σ, ν ◦ π1 = π2 ◦ τ and τ∗ω2 = ω1. The maps π1 ◦ i1 and π2 ◦ i2 are equivalent
if the diagram below commutes.
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L1 (M1, ω1) B1

L2 (M2, ω2) B2

i1 π1

i2 π2

σ τ ν

Every Lagrangian map germ can be described by a generating function. This function
relates Lagrangian catastrophe theory to general catastrophe theory.

Theorem 5. Every Lagrangian map-germ can be generated by a generating family
F (x, λ) by the points {

λ, κ|∃x such that
∂F

∂xi
= 0, κ =

∂F

∂λ

}
.

Proof. For the proof we refer to the book ’Singularities of differential maps I.’ by Arnol’d
et al. [8].

Given a symplectic manifold (M,ω) and Lagrangian submanifold L, the orbit of the
Lagrangian map germ i ◦ π is given by all Lagrangian map germs Lagrangian equivalent
to i ◦ π. If this orbit is open, the Lagrangian map germ is called stable since every
element in the orbit has a open environment contained in the orbit. If the orbit is not
open, the Lagrangian map germ is not stable.

This notion of stability can be related to the versality of the generating family.

Theorem 6. A Lagrangian map is stable if, the Lagrangian map germ given by a gener-
ating family of functions F (x, λ) with parameters λ, is Lagrangian stable. This condition
is satisfied if and only if the deformation F of the function f = F (·, 0) is R+-versal.
The R+ equivalence implies: two functions F1 and F2 are R+ equivalent if there exists
diffeomorphisms h : Rn×Rl → Rn×Rl, ϕ : Rn → Rn and a smooth function Ψ such that

F1(x, λ) = F2(h(x, λ), ϕ(λ)) + Ψ(λ).

Proof. For the proof we refer to the book ’Singularities of differential maps I.’ by Arnol’d
et al. [8].

One can apply and verify this condition for the unfoldings of the normal forms
of the catastrophes in general catastrophe theory. This results in the classification of
Lagrangian catastrophes in n ≤ 5 dimensions. These results have been extended to
n ≤ 11 dimensions by Zukalyukin in 1976 [74]. In the context of this thesis, Arnol’d’s
theorem will suffice.

Theorem 7. At every point, the germs of generic Lagrangian maps of manifolds of
dimension n ≤ 5 are equivalent to germs of projetions (p, q) 7→ q of Lagrangian manifolds
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pI = ∂S/∂qI , qJ = −∂S/∂pJ , where

for n ≥ 1 A1 : S = p2
1

A2 : S = p3
1

for n ≥ 2 also A3 : S = ±p4
1 + q2p

2
1

for n ≥ 3 also A4 : S = p5
1 + q2p

3
1 + q3p

2
1

D4 : S = p3
1 ± p1p

2
2 + q3p

2
1

for n ≥ 4 also A5 : S = ±p6
1 + q2p

4
1 + q3p

3
1 + q4p

2
1

D5 : S = p1p
2
2 ± p4

1 + q3p
3
1 + q4p

2
1

for n ≥ 5 also A6 : S = p7
1 + q2p

5
1 + q3p

4
1 + q4p

3
1 + q5p

2
1

D6 : S = p1p
2
2 ± p5

1 + q3p
4
1 + q4p

3
1 + q5p

2
1

E6 : S = p3
1 ± p4

2 + q3p
2
1p2 + q4p1p2 + q5p

2
1.

Proof. For the proof we refer to the book ’Singularities of differential maps I.’ by Arnol’d
et al. [8].

In this thesis we will be interested in Lagrangian maps with n = 3 and n = 4. For
the case n = 3 we have the stable catastrophes A1, A2, A3, A4, and D4. For the case
n = 4 we add the stable catastrophes A5 and D5 to this list.



Chapter 8

Gaussian Random Field Theory

Random field theory is a branch of mathematics with many applications, ranging from
finance, medical imaging, and quantum physics to cosmology. In essence, we attach a
random variable to each point in space. If the space is Z or R we call the random field a
random process. Brownian motion or the Wiener process are common examples of ran-
dom processes. We can however also consider more general spaces like Zd,Rd or various
manifolds. In this chapter we introduce random fields and in particular Gaussian random
fields. Examples of Gaussian random fields can be found in non-interacting Euclidean
quantum field theories, studied by Guerra, Rosen and Simon [31] or Gllmm, Jaffe, and
Wilczek [29], some situations in statistical mechanics and the density fluctuations in the
early universe. We here discuss properties of Gaussian random fields and show how to
generate draws, hereafter called realizations. All concepts and formulas presented in
this chapter can be found in Random Fields and Geometry by Adler and Taylor [1] and
Bardeen et al. [37].

Stephen O. Rice was in 1944 one of the first to study geometric properties of sta-
tionary random processes, discussing the nature of electrical noise in communication
devices [57]. In his paper, Rice calculates the average number of times a stationary ran-
dom process crosses a fixed level. This calculation, now called Rice’s formula, forms the
foundation for the statistical analysis performed in this thesis. The formula is derived
in chapter 10. Longuet-Higgins in 1957 [43] expanded upon Rice’s analysis by consider-
ing 2-dimensional Gaussian random fields, analyzing ocean waves [43]. Doroshkevich in
1970 was one of the first to apply Gaussian random fields to cosmological problems [23].
Today Gaussian random field theory has become an important concept in cosmology.
According to models of the early universe, quantum mechanical fluctuations grew during
inflation and formed the seeds for all structure formation in the universe. Observations
of these early density distribution in the Cosmic Microwave Background (CMB) indicate
that these initial fluctuations were approximately Gaussian distributed. For this reason
cosmological N -body simulations often start with a Gaussian random field initial condi-
tion and all statistical properties of our current universe can in principle be calculated
from the statistics of these fields.

In order to develop some intuition for random fields, consider the following examples.

93
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(a) A roll of a die can be
seen as a single draw from a
probability distribution.

(b) A roll of multiple dice is
a simultaneous draw of mul-
tiple statistics from a prob-
ability distribution. In this
figure the dice are not corre-
lated in any way, every die is
rolled independently of every
other dice.

(c) A roll of multiple dice
which are correlated can be
seen as a random field. Com-
pared to figure 8.1b these
dice show a clear correlation.
The distribution of these dice
is clearly smoother than that
of the dice in figure 8.1b.

Figure 8.1: Draws of dice

A fair die maps the point set {p} to the set {1, 2, 3, 4, 5, 6} with uniform probability 1/6.
When we for example throw a 6 with a die, we obtain a realization p 7→ 6 (see figure
8.1a). If we extend this example to several independent dice, we obtain a map from
several points to the set {1, 2, 3, 4, 5, 6}. The illustration in figure 8.1b corresponds to
the realization 

1 4 3 6
6 2 5 1
2 3 6 2
4 1 3 1

 .

For random fields the draws of the dice however do not have to be independent. There
can be correlations between several points defining a field as in figure 8.1c. The field
furthermore does not have to be restricted to a finite base or range. In figure 8.2 we see
for example a realization of a 2-dimensional real-valued Gaussian random field which
could represent the 2-dimensional projection of the initial density fluctuations in the
early universe.

8.1 Gaussian random fields

In the introduction of this chapter we saw a intuitive example of a random field. For com-
pleteness we now formally define a random field, although the abovementioned intuition
will prove to be more useful throughout this thesis.

Definition 22 (Random Fields). Let (Ω,F ,P) be a complete probability space and T a
topological space. A measurable map f : Ω → CT = {g : T → C} is a complex-valued
random field.



95 8.2. Gaussian random fields on Euclidean spaces

In this thesis it is often enough to consider real-valued random fields. However since
we will analyze random fields in Fourier space we need the complex-valued definition
random fields. In this definition CT has some topology induced by the topological space
T . Measurable implies that the preimage f−1, of any set in the topology of CT , is in the
σ-algebra F . With abuse of notation, a realization of such a random field can be seen
as a map

f : Ω× T → C,

with a randomness and an index argument respectively Ω and T .
Gaussian random fields are a subclass of random fields and are defined by specifying

the probability density.

Definition 23 (Gaussian Random Fields (GRF)). A random field is a Gaussian random
field with zero mean if and only if 〈f(t)〉 = 0 for all t ∈ T and for all t1, t2, . . . , tn ∈ T
the vector (f(t1), f(t2), . . . , f(tn)) is a multivariate Gaussian random variable, i.e.

P ((f(t1), . . . , f(tn))) =
exp[−1

2

∑
i,j f(ti)(M

−1)ijf(tj)]

[(2π)ndet M ]1/2
df(t1) . . . df(tn),

is the probability (f(t1), . . . , f(tn)) ∈ [f(t1), f(t1) + df(t1)]× · · · × [f(tn), f(tn) + df(tn)]
where the covariance matrix M is defined by Mij = 〈f(ti)f

∗(tj)〉, where 〈...〉 denotes the
average over the field. In this equation ∗ denotes complex conjugation.

From these definitions we observe that the statistical properties of Gaussian random
field are completely determined by the covariance matrix M with elements given by the
two-point correlation function

Mi,j = ξ(ti, tj) = 〈f(ti)f
∗(tj)〉.

In this thesis we will be interested in stationary Gaussian random fields for which the
two-point correlation function satisfies

ξ(t1, t2) = ξ̃(d(t1, t2)).

for some function ξ̃ : T → R, assuming some metric d on T . In this thesis we, with
abuse of notation, omit the tilde and identify the function by the number of arguments.

8.2 Gaussian random fields on Euclidean spaces

In this thesis we are interested in stationary Gaussian random fields on Rd with the
standard topology. As specified in the previous section, all information of such a field is
contained in the two-point correlation function

ξ(r) = ξ(r) = ξ(x,x + r) = 〈f(x)f∗(x + r)〉,
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(a) A density plot of a realization of a Gaus-
sian random field

(b) A 3-dimensional plot of a realization of
a Gaussian random field

(c) A 3-dimensional plot of a realization of a Gaussian random field [33]. The hight of the surface
corresponds to the function value of the realization

Figure 8.2
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for all r and x in Rd and r = |r|. The definition of Gaussian random fields on Euclidean
spaces is equivalent to special relations in Fourier space. Throughout this thesis, we will
use the Fourier convention

f̂(k) =

∫
f(x)eik·xdx,

with inverse Fourier transform

f(x) =

∫
f̂(k)e−ik·x

dk

(2π)d
,

where f̂ is a complex-valued function. The function f is always real-valued by which

f̂(k) = f̂∗(−k),

for all k ∈ Rd. The Fourier transform of the two-point correlation function is the so-
called power spectrum P ,

〈f̂(k1)f̂∗(k2)〉 =

∫∫
〈f(x1)f(x2)〉e−ik1·x1+ik2·x2dx1dx2

=

∫∫
ξ(r)e−i(k1−k2)·x+ik2·rdxdr

=(2π)dδ(d)(k1 − k2)

∫
ξ(r)eik1·rdr

=(2π)dδ(d)(k1 − k2)P (k1),

where k1 = |k1| and P (k) =
∫
ξ(r)eik·xdx. Conversely we can express the two-point cor-

relation function ξ in terms of the power spectrum P with the inverse Fourier transform

ξ(x) =

∫
P (k)e−ik·x

dk

(2π)d
.

We furthermore observe that the Fourier modes are independently distributed. We now
compute the distribution of each mode.

From the definition of Gaussian random fields, it follows that the probability density
is given by

Pn =
exp[−1

2

∑
i,j f(xi)(M

−1)ijf(xj)]

[(2π)ndetM ]1/2
,

for any points x1, . . . ,xn ∈ Rd. If we choose the points xi on a cubic grid with grid
size h and let the grid approach the continuum, i.e. h → 0, we obtain the probability
distribution

P [f ] = Ae−S[f ] = Ae−
1
2

∫
dx1

∫
dx2f(x1)K(x1−x2)f(x2),
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with action S[f ], similar to the path integral formulation of quantum field theory. For
a more extended treatment of the action formulation of Gaussian random field theory
see Van de Weygaert and Bertschinger [67]. See chapter 15 for a comparison. In this
equation A is a normalization constant, S the action and K the inverse of the two-point
correlation function ξ defined by∫

K(x1 − x)ξ(x− x2)dx = δ(d)(x1 − x2).

According to the convolution theorem, the definition of the inverse K is equivalent
to ∫

K̂(k)P (k)e−ik·(x1−x2) dk

(2π)d
= δ(d)(x1 − x2),

with K̂ the Fourier transform of K. Using the definition of the Dirac delta distribution

δ(d)(x) =

∫
e−ix·k

dk

(2π)d
,

we see that K̂(k) = 1/P (|k|), by which

K(x) =

∫
eik·x

P (k)

dk

(2π)d
.

Note that the inverse of the two-point correlation function is the inverse Fourier trans-
form of the reciprocal of the power spectrum. Applying K̂(k) = 1/P (|k|) to the double
convolution of S[f ] gives

S[f ] =
1

2

∫
f̂∗(k)K̂(k)f̂(k)

dk

(2π)d
=

∫
|f̂(k)|2

2P (|k|)
dk

(2π)d
,

by which the probability distribution P [f̂ ] can be written as

P [f ] = P [f̂ ] = Ã exp

[
−
∫
|f̂(k)|2

2P (k)

dk

(2π)d

]
.

From this equation we observe that each Fourier mode f̂(k) is an independently normally
distributed complex number with standard deviation

√
P (k), i.e.

P [f̂(k)] =
1√

2πP (k)
e
− |f̂(k)|

2

2P (k) .

Writing the Fourier component in the form f̂(k) = |f̂(k)|eiθ(k), we observe that

P [|f̂(k)|, θ(k)]d|f̂(k)|dθ(k) = e
− |f̂(k)|

2

2P (k)
|fk|

2πP (k)
d|f̂(k)|dθ(k).

Hence the Fourier modes are independently distributed, with random phase and Rayleigh
distributed norm. From this statement, it follows that the real and imaginary compo-
nents of f̂(k) are independently normal distributed. For Gaussian random fields on
a sphere, similar relations hold when one uses spherical harmonics instead of Fourier
transforms.
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8.3 Smoothing realizations of random fields

A realization of a random field does not generically have to be continuous or differen-
tiable. For this reason, we convolve realizations with a smoothing kernel W , i.e.

fs(x) =

∫
W (y)f(x + y).

By the convolution theorem,

f̂s(k) = Ŵ (k)f̂(k),

for all k ∈ Rd and Ŵ the Fourier transform of the smoothing kernel. Commonly top hat
and Gaussian filters W are used. In this thesis we will always use the Gaussian kernel

W (x) =
1

σ
√

2π
e−

x2

2σ2 ,

with Fourier transform

Ŵ (k) = e−
σ2k2

2 ,

as a function of the smoothing scale σ. The effect of the convolution can be seen in
figure 8.3 for different smoothing scales. Realizations of random fields convolved with a
Gaussian filter on scales σ 6= 0 become continuous and differentiable. See Adler et al.
[1] for a formal proof and conditions for smoothness and differentiability.

Smoothing is a natural operation in the context of initial conditions in cosmology.
We often model the cosmic microwave background field by a Gaussian random field. This
field is continuous and differentiable due to for example the diffusion of photons in a
plasma, which is called Silk damping. Within the framework of the truncated Zel’dovich
approximation the smoothing takes another meaning. We can probe the evolution of
specific scales in the Zel’dovich approximation by smoothing the initial conditions on
that scale. In this thesis we consider Gaussian random fields in scale space, in which the
scale is an extra dimension to the field.

8.4 Generating realizations of Gaussian random fields

We can use the statistical properties of Gaussian random fields in Fourier space to
generate Gaussian random fields. In order for the reality condition

f̂∗(k) = −f̂(−k)

to be satisfied, we start with d-dimensional discrete white noise. This can be generated
by building a d-dimensional matrix δw with independent normally distributed elements



Chapter 8. Gaussian Random Field Theory 100

1 100 200 256

1

100

200

256

1 100 200 256

1

100

200

256

(a) A realization of a Gaussian
random field without smooth-
ing

1 100 200 256

1

100

200

256

1 100 200 256

1

100

200

256

(b) A realization of a Gaussian
random field smoothing scale
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random field smoothing scale
σ = 2

1 100 200 256

1

100

200

256

1 100 200 256

1

100

200

256

l1
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tential corresponding to the re-
alization illustrated above
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(f) The first eigenvalue of the
deformation tensor of the po-
tential corresponding to the re-
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(g) The second eigenvalue of
the deformation tensor of the
potential corresponding to the
realization illustrated above
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(h) The second eigenvalue of
the deformation tensor of the
potential corresponding to the
realization illustrated above
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(i) The second eigenvalue of
the deformation tensor of the
potential corresponding to the
realization illustrated above

Figure 8.3: Realizations and eigenvalue field of a white noise Gaussian random field,
smoothed with a Gaussian kernel on different smoothing scales
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with mean 0 and standard deviation 1. We Fourier transform the distribution and
multiply each element with

√
P (k) and Ŵ (k), with k the frequency corresponding to

the matrix element, i.e.

F(δw)(k)
√
P (k)Ŵ (k),

with F the Fourier transform. After performing an inverse Fourier transform F−1, we
obtain a real Gaussian random field δ with power spectrum P smoothed on scale σ.
Note that the realization δ does not have the power spectrum P due to the smoothing
procedure. We can either say that the field with power spectrum P is smoothed with a
Gaussian distribution on scale σ or say that δ is a field with effective power spectrum

Peff (k) = Ŵ 2(k)P (k).

It can be proven that the effective power spectrum induces smooth realizations.

8.5 Correlations of Gaussian random fields

As described in the above sections, all statistical information of Gaussian random fields
is contained in the 2-point correlation function or equivalently the power spectrum.
Due to the special properties of Gaussian random fields in Fourier space, we will work
with the power spectrum. The power spectrum enters the probability function via the
covariance matrix. In this section we calculate the elements of the covariance matrix for
field statistics up to the fourth derivative in one and two dimensions. These will be used
in further chapters.

All statistics in this thesis are expressed in the matter power spectrum Pδ. The
formation of large-scale structure is however governed by the potential. From the Poisson
equation

∇2Ψ = 4πGρ0δ ⇒ Ψ̂(k) = −4πGρ0
δ̂(k)

k2

it follows that the power spectrum of the potential field PΦ is related to the matter
power spectrum via

PΨ(k) = 16π2G2ρ2
0

Pδ(k)

k4
∝ Pδ(k)

k4
.

The numerical factor 16π2G2ρ2
0 is not of great importance in this thesis, since we do not

yet apply the theory to observations. We often replace this factor by 1.
Throughout this thesis we will use the notation

T (r) = Ψ(r) Ti(r) = ∂iΨ(r) Tij(r) = ∂i∂jΨ(r) ∂i∂j∂kΨ(r) Tijkl(r) = ∂i∂j∂k∂lΨ(r),

with ∂i the spatial derivative and i = 1, . . . , d.
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8.5.1 Correlations in one dimension

The correlation between the T ’s can be calculated by expanding T in Fourier space

T (r) =

∫
T̂ (k)e−ikr

dk

2π
,

and using the definition of the power spectrum

〈T̂ (k)T̂ ∗(k′)〉 = 2πδ(1)(k − k′)Ŵ 2(k)PΦ(k) = 2πδ(1)(k − k′)k−4Ŵ 2(k)Pδ(k).

In general we reduce the correlation function to a one-dimensional integral

〈T (x)T (y)〉 =

〈∫∫
T̂ (k1)T̂ ∗(k2)e−ik1xeik2y

dk1dk2

(2π)2

〉
=

∫∫ 〈
T̂ (k1)T̂ ∗(k2)

〉
e−ik1xeik2y

dk1dk2

(2π)2

=

∫
PΦ(k)Ŵ 2(k)e−ik(x−y) dk

2π
.

In the case x = y the resulting correlations can be written as a correlation matrix with
the correlation of an odd number of derivatives with an even number of derivatives being
equal to zero,



T T1 T11 T111 T1111

T σ2
0 0 −σ2

2 0 σ2
4

T1 0 σ2
2 0 −σ2

4 0

T11 −σ2
2 0 σ2

4 0 −σ2
6

T111 0 −σ2
4 0 σ2

6 0

T1111 σ2
4 0 −σ2

6 0 σ2
8

,

with

σj(r)
2 =

∫ ∞
−∞

Pδ(|k|)W 2(k)kj−4 dk

2π
.

When x does not coincide with y, we can write the correlation matrix as



T (r) T1(r) T11(r) T111(r) T1111(r)

T (0) σ0(r)2 iσ1(r)2 −σ2(r)2 −iσ3(r)2 σ4(r)2

T1(0) −iσ1(r)2 σ2(r)2 iσ3(r)2 −σ4(r)2 −iσ5(r)2

T11(0) −σ2(r)2 −iσ3(r)2 σ4(r)2 iσ5(r)2 −σ6(r)2

T111(0) iσ3(r)2 −σ4(r)2 −iσ5(r)2 σ6(r)2 iσ7(r)2

T1111(0) σ4(r)2 iσ5(r)2 −σ6(r)2 −iσ7(r)2 σ8(r)2


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with r = |x− y| and

σj(r)
2 =

∫ ∞
−∞

Pδ(k)W 2(k)kj−4eikr
dk

2π
.

Point statistics of stationary Gaussian processes only contain the correlation at r = 0.
For those calculations we use σi(0) = σi. In figure 8.4 we illustrate the correlation
functions of a field with power spectrum P (k) = 1 and smoothing scale σ = 1. Note
that σi for i even has a real square, is symmetric and does not vanish at the origin
whereas σi for i odd, has a imaginary and antisymmetric square and vanishes at the
origin. For this reason we do not consider the odd-i sigmas in local statistics. The odd-i
sigmas do appear in calculations of two-point correlation functions.

8.5.2 Correlations in two dimensions

In two dimensions, the correlation between the T ’s can be calculated by expanding T
again in Fourier space,

〈T (x)T (y)〉 =

∫
PΦ(k)Ŵ 2(k)e−ik·(x−y) dk

2π
.

In this thesis we are only interested in point statistics in two dimensions, i.e. x = y. We
can further simplify the expression by going to polar coordinates (r, ϕ) with

k =

(
r cosϕ
r sinϕ

)
,

by which

〈T (x)T (y)〉 =

∫ 2π

0

∫ ∞
0

PΦ(r)Ŵ 2(r)r
drdϕ

2π
=

∫ ∞
0

PΦ(r)Ŵ 2(r)rdr.

In this thesis we are interested in the statistics of partial derivatives up to fourth order

YT = (T11, T22, T12;T111, T122, T222, T112;T1111, T2222, T1122, T1112, T1222).

The corresponding correlation matrix can be computed in this way
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Figure 8.4: The distance-dependence of correlation functions in one dimension with
power spectrum P (k) = 1 and unit smoothing scale. The red line is the real part and
blue line is the imaginary part of σi.
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with the moments σ2
5, σ

2
7 and σ2

9, defined by

σ2
j =

1

2π

∫ ∞
0

Pδ(k)W 2(k)kj+4dk.

The correlation matrices described above contain all the statistical information of Gaus-
sian random fields used in further chapters. In one dimension, the density of point
catastrophes and length of the A2 and A3 lines only contain the moments σ4, σ6, and
σ8. Two-point correlation functions of point catastrophes depend on the set of functions
{σ4(r), σ5(r), σ6(r), σ7(r), σ8(r)). In two dimensions the caustics can only depend on the
moments σ5, σ7, and σ9. If the analysis developed in this thesis would be developed to
a stage in which it can be compared to observations, we would be able to infer these
statistics. In the subsequent chapters we will show how to perform the calculations.
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Chapter 9

Gaussian Random Fields in Cosmology

Realizations of Gaussian random field are often seen as initial conditions in the study of
large-scale structure formation. This can most directly be justified by the observation
that the temperature fluctuations in the cosmic microwave background radiation field
(CMB) are closely modeled by realizations of Gaussian random fields. These tempera-
ture fluctuations indicate small Gaussian fluctuations in the density field at the epoch
of last scattering.

There exist more fundamental reasons to expect that the density distribution at the
epoch of last scattering is well modeled by a realization of a Gaussian random field.
Within the inflation paradigm, the fluctuations observed in the cosmic microwave back-
ground originated from quantum fluctuations of the inflaton field. During the expansion
at the epoch of inflation, the quantum fluctuations got stretched to super-horizon scales
and became classical. At times after inflation, these fluctuations reentered the observable
universe as density fluctuations and induced the fluctuations observed in the CMB. Ac-
cording to quantum field theory arguments, these fluctuations would be approximately
realizations of Gaussian random fields for the most simple slow-roll single-field inflation
models. Although the analysis of Gaussian random field fluctuations from inflation,
presented in this chapter, is widely accepted in cosmology, the process heavily depends
on our understanding of quantum mechanics and other explanations are still being pro-
posed.

Another justification follows from a probabilistic considerations. It can be shown
that the superposition of uncorrelated pulses, in the limit of many small pulses, gives
rise to realizations of Gaussian random fields. This is in line with the central limit the-
orem. Gaussian random fields form, in this respect, a natural assumption for the initial
density perturbations. Note that the superposition property is crucial, since a product of
independent pulses results in a lognormal distribution instead of a normal distribution.

In this chapter we will start with a discussion of the generation of temperature fluc-
tuations in the CMB from quantum fluctuations at inflation. We subsequently show why
realizations or Gaussian random fields arise naturally from linear stochastic systems. In
the last section we discuss the statistical properties of the cosmic microwave background
as measured by the Planck satellite.
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9.1 The cosmic microwave background from inflation

Although the ΛCDM model is in good agreement with measurements, there still exist
fine-tuning problems which we mentioned in chapter 2. These problems are well known
as the flatness, and horizon problem. Both problems do not contradict the ΛCDM
model. They merely state that the enormously flat geometry of our current universe,
and enormous isotropy of the temperature in the CMB are unnatural situations in the
ΛCDM model. We either had very special initial conditions after the big bang, or a
mechanism to flattens the geometry of space and thermalize the photon plasma before
the moment of last scattering. Inflation theory developed by Alan Guth and Andrei
Linde in the 1980s is at the moment one of the most popular proposed mechanisms. One
of the elegant features of inflation theory is that it simultaneously explains the enormous
isotropy observed in the CMB and predicts the small anisotropies. The generation of
these small anisotropies was primarily investigated by Claus Kiefer, David Polarski and
Alexei Starobinsky [40]. We here sketch the overview presented by Kiefer and Polarski
in 2008 [39].

Inflation theory proposes an epoch of great expansion. In a fraction of a second, the
universe expanded to enormous proportions and in the process smoothed the geometry
of space. This would furthermore explain the isotropy in the CMB, since points currently
opposite on the sky would have been in causal contact before inflation and would have
the possibility to get in thermal equilibrium. As derived in chapter 2, the evolution of a
homogeneous universe is governed by the Friedmann equations(

ȧ

a

)2

=
∑
i

8πG

3
ρi −

k

a2
,

ä

a
=− 4πG

3

∑
i

(ρi + 3pi).

In order to facilitate such a great expansion, we must find a energy source i satisfying

ρi + 3pi < 0.

A space independent scalar field φ(t) satisfying the perfect fluid equations

ρφ =
1

2
φ̇2 + V (φ),

pφ =
1

2
φ̇2 − V (φ),

with V the so-called inflaton potential, is an interesting candidate. To see this, observe
that

wφ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
,
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approaches −1 when

φ̇2 � V (φ).

The scalar field φ driving inflation is called the inflaton. There exist many different
inflation models, with several choices for V and sometimes several inflaton fields. We
here restrict our self to the most simple single field inflation models. The inflaton field
φ evolves in time according to the Klein-Gordon equation in comoving coordinates

φ̈+ 3Hφ̇+
dV

dφ
= 0.

The second term is the familiar Hubble drag. In most inflationary models, we can take
the slow-roll condition φ̈� 3Hφ̇, which is equivalent to the conditions

Ḣ � 3H2,
d2V

dφ2
� 9H2.

The equation of motion can in this context be approximated by

3Hφ̇ ≈ −dV

dφ
.

We see from this formula that the predictions of single field slow-roll inflation the-
ory heavily depend on the inflaton potential V . From a particle physics perspective,
the inflaton field would a field corresponding to some scalar particle described in the
fundamental theory of particle physics. A candidate in the standard model setting is
formed the only yet observed scalar particle, the Higgs boson. Inflation based on the
Higgs potential is called Higgs-inflation. However, Higgs-inflation does not straightfor-
wardly explain current observations. It furthermore remains controversial, whether the
standard model can be applied at the energy scale of inflation. Other candidates would
be scalar fields predicted by string theory such as axion monodromy inflation or other
physical models beyond the standard model. The physical community has not yet found
a final fundamental model of the inflaton potential. For this reasons, people often use
effective models. One can for example use chaotic inflation proposed by Andrei Linde.

The generic picture is however, that the inflaton potential is qualitative like figure
9.1. On the horizontal part of the potential, the inflaton field slowly moves down. During
this process, the universe dramatically expands. When the inflaton reaches the part of
the potential with a greater slope it accelerates and rolls down. While the inflaton rolls
down, the slow-roll conditions are violated and the expansion rate decreases. When the
inflaton reaches the minimum of the potential, the inflaton starts to perform a damped
oscillation, while generating particles in the process. This epoch is called reheating.

The discussion above suffices to give a qualitatively picture of the evolution of fluctu-
ations during inflation. The Hubble radius RH = H−1 = a

ȧ , which is roughly the radius
of an observable universe, is an important cosmological length scale. The distance be-
tween two points λ, hereafter called the physical length scale is a second characteristic
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Figure 9.1: The generic form of the inflaton potential

scale in cosmology. The physical length scale evolves roughly proportional to a. For an
expansion a ∝ tα, we see that the Hubble radius and physical distances evolve as RH ∝ t
and λ ∝ tα. We observe that for a decelerated expansion with α < 1, the Hubble radius
RH grows faster than the physical length scale λ by which fluctuations from outside
the horizon enter the observable universe. In a accelerated universe with α > 1, the
physical length scale λ grows faster then the Hubble radius RH by which fluctuations
get stretched outside the Horizon.

In most inflationary single-field, slow-roll models the Hubble parameter is approxi-
mately constant and the universe expands as a de Sitter universe with a ∝ eHt. Since
this is an accelerated phase of the universe, all fluctuations get stretched. The largest
sub-horizon fluctuations get stretched to super-horizon scales. On super-horizon scales,
the fluctuations do not evolve significantly, since different parts of the fluctuations are
no longer in causal contact with each other. These super-horizon fluctuations are of-
ten called ’frozen in’. When the universe enters the radiation dominated epoch, the
expansion becomes decelerated and super-horizon scale fluctuations start to reenter the
universe. Note that the fluctuations stretched to super-horizon scales at the end of
inflation, will reenter the universe the earliest (first in, last out). Based on the obser-
vations of the Planck satellite, it is generally thought that the fluctuations observed in
the CMB became super-horizon approximately 65 e-folds before the end of inflation, i.e.
ae = e65ak with ae the scale parameter at the end of inflation and ak the scale factor
when the fluctuations of the CMB where stretched to scales larger than the Hubble
radius.

9.1.1 The evolution of quantum fluctuations in the Heisenberg picture

The discussion above is a standard description of inflation theory. The universe ex-
panded dramatically, solving the flatness and horizon problem, and fluctuations present
at the epoch of inflation get stretched to super-horizon scales and reenter our observable
universe at a later epoch. This however is not full satisfactory, since it does not describe
how the initial sub-horizon fluctuations were generated and what the nature of the fluc-
tuations is after the second horizon crossing.

According to current observations, inflation is supposed to take place at energy scales
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of about 1015GeV . This is still well below the Planck scale of 1019GeV . At this scale
space-time is still supposed to be described by classical curved space-time. Quantum
fluctuations in the inflaton field δφ(x, t), which do depend on space in contrary to the
classical inflaton field, are modeled as massless a massless scalar field. This is a good
approximation for slow-roll inflation and is exact for primordial gravitational waves []. In
the rest of this section, we rescale the fluctuations by the scale factor y(x, t) = a(t)δφ(x, t)
and work with conformal time η =

∫
dt
a(t) . The classical Hamiltonian of a massless scalar

field is

H =

∫
dxH(y, p, ∂iy, η)

=
1

2

∫ [
p(k)p∗(k) + k2y(k)y∗(k) +

a′

a
(y(k)p∗(k) + p(k)y∗(k))

]
,

with the prime indicating the derivative with respect to conformal time and p the con-
jugate momentum to y given as

p =
∂L(y, y′)

∂y′
= y′ − a′

a
y.

The equation of motion of the massless scalar field is

y′′(k, η) +

(
k2 − a′′

a

)
y(k, η) = 0.

We can quantize the system by transforming y and p to operators and imposing the
canonical commutation relations

[y(k, η), p†(k, η)] =iδ(3)(k− k′),

[y(k, η), y(k′, η)] =[p(k, η), p(k′, η)] = 0,

with units such that ~ = 1. As in the quantum mechanical harmonic oscillator, we can
write the quantum Hamiltonian in terms of creation and annihilation operators,

a(k, η) =
1√
2

(√
ky(k, η) +

i√
k
p(k, η)

)
,

a†(k, η) =
1√
2

(√
ky(k, η)− i√

k
p(k, η)

)
.

In terms of these operators, the y and p operators can be written as,

y(k, η) =
a(k, η) + a†(−k, η)√

2k
,

p(k, η) =− i
√
k

2
(a(k, η)− a†(−k, η)).
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The commutation relation and Hamiltonian in terms of the creation and annihilation
operators are

[a(k, η), a†(k′, η)] =δ(3)(k− k′),

[a(k, η), a(k′, η)] =[a†(k, η), a†(k′, η)] = 0,

and

H =

∫
dk

2

[
k(a(k, η)a†(k, η) + a†(−k, η)a(−k, η))

+ i
a′

a
(a†(k, η)a†(−k, η)− a(k, η)a(−k, η))

]
.

In the Heisenberg picture1, the creation and annihilation operators satisfy the differential
equations (

a′(k, η)
(a†(k, η))′

)
= k

(
−i aH

k
aH
k i

)(
a(k, η)
a†(k, η)

)
.

If the matrix would have been diagonal, the system of differential equations would have
been uncoupled and the creation an annihilation operator would have evolved indepen-
dently. The off-diagonal terms generate a mixing between the creation and annihilation
operators. Note that the off-diagonal term aH

k is large for super-horizon scales and is
negligible for sub-horizon scales. This will lead to the quantum-classical transformation
of the fluctuations.

By combining the system of differential equations with the expression of y(k, η) in
terms of the creation and annihilation operators we can show that

y(k, η) = fk(η)ak + f∗k (η)a†−k

with ak = a(k, η0) at some initial time η0 and fk satisfying the classical equation of
motion with the initial condition fk(η0) = 1√

2k
. We can write this equation without

direct reference to the creation and annihilation operators as

y(k, η) =
√

2kfk1(η)yk −
√

2

k
fk2(η)pk

with yk = y(k, η0), pk = p(k, η0), fk1 = Re[fk], and fk2 = Im[fk]. Analogously, the
evolution of the momentum operator can be written as

p(k, η) =

√
2

k
gk1(η)pk −

√
2kgk2(η)yk,

with gk satisfying the equation of motion with initial condition gk(η0) =
√

k
2 and gk1 =

Re[gk], gk2 = Im[gk].

1A quantum mechanical framework in which the wave functions are static and the operators evolve
in time.
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For single field slow-roll inflation models, the discussion above completely describes
the evolution of quantum fluctuations, without the collapse of the wave function. In most
inflation models, space-time evolves as a de Sitter space with the expansion a ∝ eHt,
with a constant Hubble parameter H. In this approximation, we can solve fk and gk
exactly,

fk =
−i√
2k
e−ikη

(
1− i

kη

)
,

gk =− i
√
k

2
e−ikη,

η =− 1

aH
< 0.

For a more general discussion see Kiefer et al. [39]. For modes outside the horizon, we
are in the limit kη � 1. In this limit fk2 and gk1 vanish, while fk1 and gk2 do not vanish.
In this limit we have approximately

y(k, η) =
√

2kfk1(η)yk,

p(k, η) =−
√

2kgk2(η)yk,

satisfying the commutation relation

[y(k, η), p(k, η)] = 0.

Hence we see that the quantum fluctuations outside the horizon, act as classical fluctu-
ations. Note that this is independent of the initial wave function.

9.1.2 The evolution of quantum fluctuations in the Schrödinger picture

In the Schrödinger picture2, we can do an analogous calculation. Assume that the initial
state of the perturbations is the vacuum state |0, η0〉 satisfying

ak|0, η0〉 = 0,

for all k. The time-dependent Schrödinger equation

i~
∂

∂t
Φ = HΦ

can be directly solved using the Heisenberg computation and results in the wave function

Φ =
1

4
√
π|fk|2

exp

(
− |yk|

2

2|fk|2
(1− 2i(fk1gk2 − fk2gk1))

)
.

2A quantum mechanical framework in which the operators are static and the wave function evolves
in time.



Chapter 9. Gaussian Random Fields in Cosmology 114

It can be shown that the wave function in the limit of fluctuations on super-horizon
scales, get so-called squeezed when the quantity (fk1gk2 − fk2gk1) becomes large. The
probability distribution of the fluctuations is unaffected by the this property since the
modulus of Φ is independent of the phase. The probability distribution is

p(yk) =
1√
π|fk|2

e
− |yk|

2

|fk|2 ,

which coincides with the probability distribution of Fourier modes a of Gaussian random
field with power spectrum

P (k) =
1

2
|fk|2.

The power spectrum turns out to be proportional to k−1 in the limit kη � 1. Hence
the power spectrum of the potential in the super-horizon limit is approximately a k−1

power law. The corresponding density power spectrum is linear in k. This observation
is in agreement with measurements of the cosmic microwave background and is known
as the Harrison-Zel’dovich power spectrum.

9.1.3 Collapse of the wave function

The analysis in the Heisenberg picture showed that fluctuations outside the horizon
behave as classical fluctuations. The analysis in the Schrödinger picture showed that
the fluctuations outside the horizon are well modeled by Gaussian random fields. Note
however that in the analysis above, the fluctuations above remain quantum mechanical
in nature. Even though they may look like classical fluctuations, nothing forbids them
to become quantum mechanical in nature while reentering the horizon. We furthermore
assumed that the Fourier modes evolved isolated and did not experience measurements
and wave collapses. This is an unrealistic assumption since evolution of the inflaton is
unlikely to be linear and will have to couple to different fields in order for the process
of reheating to occur. Here, we shortly describe how the collapse of the wave function,
makes the classically behaving quantum fluctuations really classical. For a more elabo-
rate discussion see Kiefer et al. [39].

Small couplings between different Fourier modes can have huge implications. While
the interaction my have negligible influence on the fluctuations, the fluctuations can
get entangled and lead to a collapse of the wave function at a later time. Studies have
shown that highly squeezed quantum states have a higher probability to collapse than
non-squeezed states. This is the reason that it is difficult to generate squeezed quantum
states in quantum optics. Hence even though the fluctuations outside the horizon do not
evolve significantly due to interactions, they do collapse due to the entanglement with
other fluctuations probably existing in a part of the universe outside the causal hori-
zon. There are effects of the collapse on the fluctuations. Different couplings can lead
to slightly different collapses. These effects are however not measurable with current
telescopes due to the fact that the fluctuations are highly squeezed before they collapse.
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The collapse of the wave function plays a crucial role in a formal description of the
quantum to classical transition of the fluctuations generated by inflation. In order to
do it properly, we have to understand the full Hamiltonian of the inflaton field and
must have a good understanding of the collapse of the wave function. However since
our understanding of the interpretation of the collapse of the wave function is still not
fully developed, there are still ongoing discussions about the details of the transition.
See for example [64] for an discussion of the sort comings of the discussion presented
here. These details however do not significantly influence the predictions presented here.
We seem to know enough about quantum mechanics to understand the CMB up to the
accuracy with which we can measure it.

9.2 Gaussian random fields from the central limit theorem

In this section we approximate the statistics of functions generated by the superposition
of many small uncorrelated pulses. We follow the reasoning of Feynman and Hibbs
[26]. Imagine for example the signal of a Geiger-Muller counter, in which the signal
is generated by cosmic rays, the distribution of raindrops or the hight in a mountain
landscape.

For simplicity we take the Geiger-Muller counter example and assume that every
cosmic ray generates an identical pulse. We furthermore assume that the signal of
Geiger-Muller counter f : [0, T ] → R in the interval [0, T ] is the superposition of n
pulses, i.e.,

f(t) =

n∑
j=1

g(t− tj),

with t1, . . . , tn ∈ [0, T ] the times at which the cosmic rays are detected and the function
g defined as the pulse generated by a single cosmic ray observed at time t = 0. See figure
9.2 for an example of such a function. If we know the number of detections n and times
of detection t1, . . . , tn, this would be a reasonable model of the signal f . However, in
concrete situations, we do not know beforehand how many signals one detects in a given
time interval or at which times a detection is made. We can only reasonable assume
that a observation run results in a Poisson distributed number of detections, and that
the times of detection are uniformly distributed over the observation time interval, i.e.

P (n = k) =
(µT )k

k!
e−µT ,

with µ the rate of detections and

P (ti = t) =

{
1/T if t ∈ [0, T ],

0 otherwise,
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Figure 9.2: A random signal

for i ∈ {1, 2, . . . , n}. It is clear that these assumptions completely determine the prob-
ability distribution of f , i.e. we can easily generate realizations, the formulation is very
implicit. That is to say, the distribution is not obviously Gaussian and it is difficult to
determine the measure for some arbitrary function h. In the subsequent derivation, we
make this explicit and show the limit in which the distribution becomes Gaussian.

In order to analyze this problem, we discuss some standard probabilistic machinery and
extend it to a functional formulation. Given a probability distribution P with respect
to x, the average of x is

〈x〉 =

∫
xP (x)dx∫
P (x)dx

,

where P is normally normalized such that
∫
P (x)dx = 1. The so-called characteristic

function of P is

φ(k) = 〈eikx〉 =

∫
eikxP (x)dx∫
P (x)dx

,

which is the Fourier transform of P and contains the same information since we can
always return to the probability density via

P (x) =

∫
e−ikxφ(k)

dk

2π
.

The characteristic function has the nice property that

φ(0) = 1, φ′(0) = i〈x〉, φ′′(0) = −〈x2〉, φ′′′(0) = −i〈x3〉, . . . ,

which can be proven by interchanging the order of integration and differentiation in the
definition of the characteristic function.
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In functional notation, we have a functional P which is the probability density with
respect to functions, i.e. the probability that a function is contained in a subset A of
function space is ∫

A
P [f(t)]Df(t),

where straight brackets indicate functionals and the (t) merely serves to indicate that
we integrate over functions. The average in this setting is defined as

〈Q〉 =

∫
Q[f(t)]P [f(t)]Df(t)∫

P [f(t)]Df(t)
,

where we always explicitly write the normalization factor, since it is often difficult to
normalize P properly. The characteristic function in this functional framework is defined
as

Φ[k(t)] =

∫
ei
∫
k(t)f(t)dtP [f(t)]Df(t)∫
P [f(t)]Df(t)

,

with inverse

P [f(t)] =

∫
e−i

∫
k(t)f(t)dtΦ[k(t)]Dk(t).

Note that the integral in the exponent arises from the limit of a product of exponents.
The characteristic functional satisfies similar moment equations

Φ[0] = 1,
δΦ

δk(a)

∣∣∣∣
k(t)=0

= i〈f(a)〉, δ2Φ

δk(a)δk(b)

∣∣∣∣
k(t)=0

= −〈f(a)f(b)〉, . . . ,

with δ/δk(a) the functional derivative.

This allows us to determine the explicit probability distribution of the signal of the
Geiger-Muller counter. We use the definition of the characteristic functional, and com-
pute it using the given probabilities of the signal f . We subsequently approximate the
functional in the above mentioned limit and perform the functional inverse Fourier trans-
form.

First assume that we know the number of detections n in the time interval [0, T ].
The characteristic functional is

Φ[k(t)] =

∫
ei
∫
k(t)f(t)dtP [f(t)]Df(t)∫
P [f(t)]Df(t)

=

∫ T

0
. . .

∫ T

0

∫ T

0
ei
∑n
j=1

∫
k(t)g(t−tj)dtdt1

T

dt2
T

. . .
dtn
T

=

(∫ T

0
ei
∫
k(t+x)g(t)dtds

T

)n
,
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where in the last equation we used a change of variables to remove the tj dependence.
For clarity we will write the last expression as An. However, we in reality do not know
the number of detections n. We however do know that n is assumed to be Poisson
distributed. The functional, including the uncertainty in the number of detections and
times of detections is

Φ[k(t)] =
∑
n

An
(µT )n

n!
e−µT = e−(1−A)µT = exp

[
−µ
∫ T

0

(
1− ei

∫
k(t+s)g(t)dt

)
ds

]
,

where we used the Taylor expansion of ex in x around x = 0. So far everything has been
exact. We in principle would like to perform the functional inverse Fourier transform on
this characteristic functional. This however results in a path integral which we are unable
to solve (yet). Instead we consider the limit in which the detection rate µ becomes very
large while the pulse g becomes very small. In this limit, we can expand ei

∫
k(t+s)g(t)dt

in a Taylor series. If we expand up to quadratic order, we obtain the characteristic
functional

Φ[k(t)] = eiµ
∫ T
0

∫ T
0 k(t+s)g(t)dtdse−

µ
2

∫ T
0

∫ T
0 k(t)g(t+s)dt

∫ T
0 k(t′)g(t′+s)dt′ds.

Since we assume that g is small, g will not significantly couple to k in the integral of the
first exponent. In the limit of large µ and small g, we can make a further approximation∫ T

0

∫ T

0
k(t+ s)g(t)dtds = G

∫ T

0
k(t)dt,

with G =
∫ T

0 g(t)dt. We can write the integral in the second exponent more clearly by
defining the so-called two point correlation function

λ(τ) =

∫
g(t)g(t+ τ)dt.

We will show in a minute, that this is indeed the two point correlation function as
used in the previous chapter. These two equations simplify the characteristic functional
considerably

Φ[k(t)] = eiµG
∫
k(t)dte−µ/2

∫∫
k(t)k(t′)λ(t−t′)dtdt′ .

By taking functional differentials of the characteristic functional we obtain the mo-
ments in this approximation. The first derivative gives the expectation value of f

δΦ[k(t)]

δk(a)

∣∣∣∣
k(t)=0

= i〈f(a)〉 = iµG−
[
µ

∫
k(t)λ(t− a)dt

]
Φ[k(t)]

∣∣∣∣
k(t)=0

= iµG,

which is expected since in a unit time interval there are µ copies of g, and since the
problem is symmetric in time. Since we are in general not interested in the general
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signal, but rather the fluctuations with respect to the average, we rescale f to obtain
the characteristic functional

Φ[k(t)] = e−µ/2
∫∫

k(t)k(t′)λ(t−t′)dtdt′ .

The second functional differential gives

δ2Φ

δk(a)δk(b)

∣∣∣∣
k(t)=0

=− 〈f(a)f(b)〉 = −
[
µλ(a− b)Φ[k(t)]

−
[∫

k(t)λ(t− a)dt

] [∫
k(t′)λ(t′ − a)dt′

]
Φ[k(t)]

]∣∣∣∣
k(t)=0

= −λ(a− b).

Hence λ is indeed the two point correlation function. We directly observe that higher
order correlation functions are expressed in terms of the two point correlation function.
This turns out to go according to the Wick contractions. This in principle proofs that
f is a realization of a Gaussian random field in this approximation.

We can compute the probability functional of the Geiger-Muller counter signal f
explicitly in this approximation by performing the inverse functional Fourier transform.
For Gaussian functionals we can perform this path integral. The resulting probability
functional is

P [f(t)] = e
− 1

2µ

∫∫
f(t)K(t−t′)f(t′)dtdt′

,

with K the inverse of λ defined as∫
λ(t− τ)K(τ − s)dτ = δ(1)(t− s),

with δ(1) the Dirac delta function. This is exactly the same as the continues limit of the
definition of Gaussian random fields discussed in the previous chapter.

Firstly, note that this derivation did not use the fact the domain of f is one-
dimensional. The proof can trivially be extended to higher dimensional spaces. Sec-
ondly, note that the derivation was a bit artificial. When we would include third order
approximations of the exponent, we would preserve more information of g and generate
deviations from the Gaussian case, often called non-Gaussianities. The main problem
with this approach is that we so far are unable to perform the path integral in the inverse
Fourier transform for quadratic terms. In the literature, people circumvent this problem
by perturbing the definition of Gaussian random fields directly with so-called Edschward
expansions in terms of so-called cummulants. Although possible to implement, we will
not consider non-Gaussian statistics in this thesis and always assume the initial density
fluctuations to be purely Gaussian distributed.

9.3 The cosmic microwave background

The most detailed observations of the cosmic microwave background anisotropies are
currently obtained with the Planck satellite. The temperature map of this survey is
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plotted in figure 9.3a. The power spectrum (in spherical harmonic modes, which we
here will interpret as Fourier modes) of this map is depicted in figure 9.3b. Note that
this is the reduced power spectrum with respect to the Harrison-Zel’dovich power spec-
trum. In the literature, this is however always denoted as the power spectrum. The
oscillations in the power spectrum are small deviations form the Harrison-Zel’dovich ap-
proximation. They are an imprint of the acoustic oscillations, and are well modeled by
the concordance ΛCDM model described in chapter 2. In fact, the peaks are able to
constrain cosmological parameters as the geometry and energy content of our universe.

The power spectrum is the Fourier transform of the two-point correlation function.
The Planck consortium, has also tried to constrain higher order correlation functions (see
figure 9.3b). So far, measurements of the Planck map have not led to a detection of de-
viations from the Gaussian random field assumption. Hence if present, non-Gaussianties
are small. This forms one of the strongest proofs in favor of Gaussian statistics of the
initial density perturbations.
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(a) The cosmic microwave background observed with the Planck satellite

(b) The power spectrum of the cosmic microwave background observed with the Planck satellite

Figure 9.3: Measurements made with the Planck satellite
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Chapter 10

Geometric Statistics of Random Fields

In chapter 8 we introduced random fields. In this chapter we study geometric statistics
of stationary random fields. We start with Rice’s formula which estimates the number
of level crossings, for smooth stochastic processes in continuous time. In this thesis we
look at continuous space (or continuous manifolds). Besides the statistics of points char-
acterized by certain conditions, we also study curves, i.e. level sets in two dimensions.
These curves are studied for stationary Gaussian random fields which have continuous
realisations obtained by convolving realizations with a Gaussian distribution.

The proofs presented in this chapter are restrictive in the sense that they assume
continuity and differentiability of the realizations. These assumptions make the proofs
elementary and comprehensible. They are justified by the fact that the initial density
fluctuations are smooth. We follow the analysis of Longuet-Higgins [43] and Bardeen et
al. [37]. The theorems however hold in a less restrictive setting. Proofs can be found in
”Random Fields and Geometry” by Adler and Taylor [1].

10.1 Point statistics of random fields

Geometric statistics studies the expectation values and probability distributions of geo-
metrical features occurring in random fields. For point features we consider the average
number of and correlation of level crossings in one-dimension and the average number
and correlation of critical points in d-dimensions. The formulas presented in this section
are nowadays basic tools and can be proven in a more general setting.

10.1.1 Rice’s formula

In 1936 Stephen Rice studied one-dimensional random fields at Bell-Labs and calculated
the average number of level crossings of realizations of random fields. Rice’s formula was
conjectured, while the theory was in its infancy. It was rigorously proven in later years.
Although fundamental, the formula is commonly used in geometric statistics.

Theorem 8 (Rice’s formula). Consider a stationary random field with probability density

123
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p(f, f ′) with function value f and spatial derivative f ′. Let

Dλ = {number of x per unit distance : f(x) = λ},

then Rice’s formula states that the average number of level crossings is

N (λ) = E(Dλ) =

∫
|f ′|p(f = λ, f ′)df ′,

assuming that level crossings are isolated point features.

Proof. Given a continuous, differentiable realization f of the random field, consider the
generalized function

n(x) =
∑

xλ∈f−1(λ)

δ(1)(x− xλ),

with δ(1) the one-dimensional Dirac delta function. By construction, the number of level
crossings of f is given by∫

n(x)dx =

∫ ∑
xλ∈f−1(λ)

δ(1)(x− xλ)dx.

The average number of level crossings of such a realization is

N (λ) = 〈n(x)〉 =

∫ ∑
xλ∈f−1(λ)

δ(1)(x− xλ)p(f)dx.

All level crossings are assumed to be isolated. For each xλ ∈ f−1(λ) let Uxλ be an open
environment containing only level crossing xλ. Since δ(1)(x− xλ) is zero outside Uxλ ,

N (λ) = 〈n(x)〉 =
∑

xλ∈f−1(λ)

∫
Uxy

δ(1)(x− xλ)p(f)dx.

Now using a change of variables∫
Uxλ

δ(1)(x− xλ)dx =

∫
Uxλ

δ(1)(f(x)− λ)|f ′(x)|dx,

and by the fact that δ(1)(f(x)− λ) is nonzero if and only if δ(1)(x− xλ) is nonzero, we
observe that

N (λ) =

∫
|f ′(x)|δ(1)(f(x)− λ)p(f(x), f ′(x))dx =

∫
|f ′(x)|p(f = λ, f ′(x))dx

=〈|f ′(x)|δ(1)(f(x)− λ)〉.

This proves Rice’s formula.

In the Gaussian case, Rice’s formula reduces to the Gaussian

N (λ) =

∫
|f ′|p(f = λ, f ′)df ′ =

1

2πσ0σ2
e
− f2

2σ20

∫
f ′e
− f ′2

2σ22 df ′ =
σ2

πσ0
e
− f2

2σ20 ,

with σ2
0 = 〈f2〉 and σ2

2 = 〈f ′2〉. Note that the power spectrum completely determines
the correlation functions and the level crossing density.



125 10.1. Point statistics of random fields

10.1.2 d-dimensional one-point correlation

Rice’s formula can be extended to point features in higher-dimensional stationary ran-
dom fields.

Theorem 9 (one-point correlation). Consider d continuous and differentiable realiza-
tions of (possibly different) d-dimensional random fields fi : Rd → R with i = 1, . . . , d.
If the points in Λ(y1, . . . , yd) = {x ∈ Rd|fi(x) = λi} are isolated, the average number of
points in Λ(y1, . . . , yd) per unit volume is

N (λ) = 〈|det ∂ifj |δ(d)(f(x)− λ)〉.

with f = (f1, . . . , fd) and λ = (λ1, . . . , λd).

Proof. The proof is identical to the proof of Rice’s formula, where we use

δ(d)(f(x)− λ)|det ∂ifj | = δ(d)(x− xλ)

on regions with only one solution of f(x) = λ.

We can for example consider critical point densities. This analysis is analogous to
Bardeen et al. [37]. A realization f : Rd → R in a critical point xy satisfies ∂if(xy) =
fi = 0 for i = 1, 2, . . . , d. The number density of critical points with function value f is

Ncrit(f) = 〈|det fij |δ1(f1) . . . δ1(fd)〉 =

∫
|det fij |p(f, fi = 0, fij)

∏
dfij .

where we fij = ∂i∂jf(xy) and we integrate over all independent variables (we can chose
i ≥ j). By integrating over regions of the parameter space {fij} we can calculate the
average number of critical points with a given index, i.e. maxima, minima or saddle
points.

10.1.3 Two-point correlation functions

Above we described the density of point features in random fields. We calculated the
so called one-point correlation function. The clustering of point distributions is traced
by the higher correlation functions. In this thesis we restrict ourself to the two-point
correlation function. The calculations can however be easily extended to higher-point
correlation functions.

Given the probability P2(r) that two points are separated by distance r, the two-point
correlation function ξ2 is defined as

P2(r) = N 2(1 + ξ2(r)),

where N is the mean number of points per unit volume (the one-point correlation func-
tion). The two-point correlation function measures the excess probability of clustering
with respect to the unclustered Poisson distributions.

In the above section we calculated the one-point correlation function. We now cal-
culate P2 for a stationary field.
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Theorem 10 (two-point probability). Consider 2d continuous and differentiable realiza-
tions of (possibly different) d-dimensional random fields fi, gi : Rd → R with i = 1, . . . , d.
If the points in Λ(y1, . . . , yd, µ1, . . . , µd) = {x ∈ Rd|fi(x) = λi and gi(x) = µi} are iso-
lated, the average number of points in Λ(y1, . . . , yd, µ1, . . . , µd) per unit volume is

N (λ) = 〈|det ∂ifj ||det ∂igj |δ(d)(f(x)− λ)δ(d)(g(x)− µ)〉.

with f = (f1, . . . , fd), g = (g1, . . . , gd) and λ = (λ1, . . . , λd), µ = (µ1, . . . , µd).

Proof. By subsequently performing the proof of the d-dimensional one-point correlation
function on the two points one obtains this relation.

Peter Coles has used this computation in 1989 [20] to compute the two-point cor-
relation function of peaks in a one-dimensional Gaussian random field. In 1993 Coles
et al. [21] performed a analogous calculation on the three-point correlation function.
For a stationary GRF one can compute this by identifying f1 = f ′(0), g1 = g′(r), using
λ = µ = 0 and integrating over negative f ′′(0), f ′′(r).

10.2 Line statistics of random fields

Above we considered correlation functions of point features in stationary random fields.
For one-dimensional features in stationary random fields, i.e. curves, we calculate the
flux. This is the density of curves crossings with a line element, or the average line length
per unit volume. In principle this can be extended to higher-dimensional features, i.e.
volumes. In this thesis we will however restrict ourself to two-dimensional random fields
and consider the statistics of point and curves features. The average length of the curve
has been calculated by Longuet-Higgins in 1957 [43] and Dmitri Novikov et al. in 2006
[50].

Theorem 11 (Flux of lines in 2-dimensions). Given a continuous, differentiable real-
ization f : R2 → R, consider the level set f−1(λ) = {x ∈ R2|f(x) = λ}. The average
length per unit area is

L(λ) =

∫ √
f2

1 + f2
2 p(f = λ, f1, f2)df1df2.

Proof. Consider a line in the x1 direction. According to Rice’s formula, f intersects the
level set f−1(λ) in an interval [r1 − dr1/2, r1 + dr1/2] along with probability

dr1

∫
|f1|p(f = λ, f1, f2)df1df2.

The length of the level set f−1(λ) in the square [r1 − dr1/2, r1 + dr1/2; r1 − dr1/2, r1 +
dr1/2] is dr2

cosα with α the angle of the level set with respect to the direction r2. We can
express α in terms of f1 and f2 as

cosα =
|f1|√
f2

1 + f2
2

,
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by which the statistical length is

L(λ)dr1dr2 =dr1dr2

∫
1

cosα
|f1|p(f = λ, f1, f2)df1df2

=

∫ √
f2

1 + f2
2 p(f = λ, f1, f2)df1df2dr1dr2.

This proves the statement.

In this thesis we compute the statistics of caustics in one- and two-dimensional mod-
els of the universe. Since our universe has three spatial dimensions, the statistics of
zero- and one-dimensional objects will not be sufficient when we compare predictions
to observations. In an analysis of caustics in three-dimensional models of the universe
we have to extend the analysis to the statistics of surfaces. We then have to consider
the average area of a surface per volume element. The geometric statistical analysis has
been developed and is completely analogous to computation of the average line length
per unit area. However since the expression is significantly more complex and since we
will only consider caustics in one- and two-dimensional models of the universe, we will
not study that expression here.
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Chapter 11

Critical Line Statistics

In this thesis we use caustics, appearing in the Zel’dovich approximation, to guide us to
a skeleton of the initial density perturbations. Such a skeleton is often denoted as an
embryonic skeleton and is used to determine the regions in Lagrangian space which grow
to become filaments, walls, clusters and voids. Generally, the peaks will be related to
clusters, dips to voids and saddle points to filaments. In this thesis we furthermore used
the Zel’dovich approximation to estimate the evolution of the skeleton during structure
formation. Dmitri Novikov et al. have in 2006 [50] proposed a different two-dimensional
embryonic skeleton. This skeleton is guided by the Morse-Smale complex of the initial
density perturbations, a tessellation of the density field using the critical points and crit-
ical lines. This approach has been extended to the three-dimensional case by Pogosyan
et al. [55]. In this thesis we discuss the analysis of Novikov et al. and compare it to the
skeleton based on caustics.

11.1 Morse-Smale complex

The Morse-Smale complex is a tessellation of the domain of a smooth Morse function1.
The vertices of the tessellation correspond to the critical points of the function, while
the curves correspond to critical lines. We here sketch the tessellation and indicate its
importance. For a formal definition on a compact manifold M ⊂ R2, let f : M → R be
a Morse function. The integral lines of this function are the curves p : R→M satisfying

d

ds
p(s) = ∇h(p(s)),

for all s ∈ R. The path p originates in the origin org p = lims→−∞ p(s) and ends in
the so-called destination dest p = lims→∞ p(s). The compactness of M can be used to
proof the existence of the two limits. We do not prove this here. Using the definition of
the origin and destination we can define the stable and unstable manifolds. The stable

1Morse function contain only nondegenerate critical points.
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Figure 11.1: The Morse-Smale complex of a function

manifold of the critical point e is defined as

S(e) = {p | dest p = e} ∪ {e}.

The unstable manifold of the critical point e is defined as

U(e) = {p | org p} ∪ {e}.

In terms of the stable and unstable manifold, we define the Morse-Smale complex. The
Morse-Smale cells are the connected components of the set

S(e1) ∩ U(e2)

for all critical points e1, e2 ∈ M . The resulting Morse-Smale complex is the collection
of all Morse-Smale cells of h. For an illustration of a Morse-Smale complex see figure
11.1. The boundaries of the complex give a skeleton. If we assume that δ is a Morse
function and perform this protocol on the initial density field δ, we obtain a skeleton of
the initial conditions. The maxima of the perturbations are assumed to absorb matter
from their surroundings and become clusters. The curves connecting the maxima via
a saddle point are assumed to represent embryonic filaments. The enclosed areas are
under dense and are assumed to form voids in the cosmic web.
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11.2 Skeleton based on Morse-Smale complex

In the article by Dmitri Novikov et al. [50], the critical lines of the Morse-Smale complex
are approximated. Instead of solving the differential equation of integral lines

dp

dt
= ∇δ,

they state that near maxima and saddle points, to leading order, the gradient ∇δ is the
eigenvector of the Hessian H of the density perturbations δ corresponding to the largest
eigenvalue. That is,

λ2 <0,

H∇δ =µ1∇δ,

with µ1 ≥ µ2 the ordered eigenvalues of the Hessian H of the density perturbation δ.
For Morse functions this condition results in a set of curves. These curves are an

approximation of the integral lines discussed above and are called the stiff approximation
of the integral lines. They deviate a bit, away from the critical points, while they are
close to integral lines near maxima and sadle points. This condition is linear and is
easier to handle, in Gaussian random field theory, than the condition for integral lines.

The condition of the stiff approximation is equivalent to stating that the lines of the
stiff approximation are the zero set of the function

S = det (H∇δ,∇δ) .

Using this formulation, Novikov et al. [50] prove that the length of the stiff approxima-
tion skeleton, above the threshold δth is

Ls(δth) =

∫
δ>δth

√
S2

1 + S2
2P (δ,S = 0,S1,S2)dδdS1dS2,

with Si = ∂S
∂xi

the partial derivative of S in the spatial directions. Novikov et al. further-
more numerically estimated the evolution of the line length in the Zel’dovich approxi-
mation.

Pogosyan et al. [55] extended the work of Novkov et al. by defining a primary
skeleton, and anti-skeleton and secondary skeleton. The components of the skeleton are
defined by the conditions

Primary skeleton H · ∇δ = µ1∇δ, µ1 + µ2 ≥ 0,

Primary anti-skeleton H · ∇δ = µ2∇δ, µ1 + µ2 > 0,

Secondary H · ∇δ = µ2∇δ, µ1 + µ2 ≤ 0,

Secondary H · ∇δ = µ1∇δ, µ1 + µ2 > 0.

The primary skeleton corresponds with the points in which ∇δ is aligned with the di-
rection in which the field δ is the least curved, i.e. where the eigenvalue is smallest in
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magnitude. The secondary skeleton corresponds with the points in which ∇δ is aligned
with the direction in which the field δ is most curved. For the primary skeleton we
distinguish to types. The primary skeleton is formed by the points at which ∇δ is the
eigenvector corresponding to the highest eigenvalue of the Hessian. This corresponds to
the filamentary ridges spreading from the maxima in the direction of the slowest descent.
The primary anti-skeleton is formed by the points at which ∇δ is aligned with the second
eigenvalue of the Hessian. These lines correspond to the filamentary valleys spreading
from the minima in the direction of the slowest ascent. The anti-skeleton can be seen
as the skeleton of the −δ field. They furthermore computed the statistics of the average
line length of the individual components of the skeleton.

11.3 Morse-Smale skeleton versus caustics skeleton

There is one main difference between the skeleton based on the Morse-Smale complex
and the skeleton based on the Caustics of the Zel’dovich approximation. The Morse-
Smale approach is based on the density field whereas the caustics approach is based
on the corresponding gravitational potential field. The two are related via the Poisson
equation, by which the two fields contain the same information. However the resulting
skeletons do differ on some points. In order to see the differences we compare the con-
ditions and show the differences numerically in realizations.

In the caustics approach, we have the gravitational potential Φ, with the correspond-
ing Hessian HΦ, the ordered eigenvalues λ1 ≥ λ2 and the corresponding orthogonal
eigenvectors v1,v2. The A3 lines corresponding to the λ1 and λ2 eigenvalue fields satisfy

0 = λ11 = ∇λ1 · v1 and

0 = λ22 = ∇λ2 · v2,

respectively.
In the Morse-Smale approach, we start with the density perturbation δ, compute

the Hessian Hδ, the ordered the eigenvalues µ1 ≥ µ2 and the corresponding orthogonal
eigenvectors w1, and w2. The primary skeleton and primary anti-skeleton are defined
as

H · ∇δ =µ1∇δ, µ1 + µ2 ≥ 0, and

H · ∇δ =µ2∇δ, µ1 + µ2 > 0.

This is equivalent to ∇δ ∝ w1 and ∇δ ∝ w2 under the conditions of the trace of the
Hessian. Since w1 and w2 are orthogonal, the primary skeleton and primary anti-skeleton
can equivalently be defined as

0 =∇δ ·w2, µ1 + µ2 ≥ 0, and

0 =∇δ ·w1, µ1 + µ2 > 0,
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respectively.
The main difference between the equations is the role of the density perturbations

and gravitational potential in these equations. From the Poisson equation we know that
δ = λ1 +λ2. In regions in which λ1 ≥ λ2 ≥ 0, we can approximate λ1 with δ. In this case
the A3 line condition corresponding to the λ1 field approaches the primary anti-skeleton
condition. In the converse case 0 ≤ λ1 � λ2 the A3-line condition corresponding to the
λ2 eigenvalue field approaches the definition of the primary skeleton.

Generally we expect that the Morse-Smale and caustics skeleton behave similarly in
the regions indicated above. In intermediate regions, the skeletons will deviate since
the gravitational field is generally more smooth and large scale then the density field.
A formal treatment of the differences would amount constraint Gaussian random fields,
containing both the statistics of the density perturbation and the eigenvalues of the
Hessian of the gravitational potential. Such Gaussian random field statistics have been
analyzed by Rossi [59]. However, in this thesis we will not delve further in such an
analytic comparison.

11.3.1 Dynamics of caustics skeleton

One of the main advantages of the caustics-oriented skeleton over the Morse-Smale-
oriented skeleton is the role of dynamics. In the Morse-Smale-oriented skeleton we
use the intuition that peaks lead to clusters, saddle points to filaments and minima to
voids. The caustics-oriented skeleton is based on the gravitational field and the truncated
Zel’dovich approximation which describes the dynamics and contains more information
about the surrounding of a peak, saddle point or minimum. The fact that the caustics-
oriented skeleton is more directly related to the evolution of the perturbations makes
it possible to transform statistical calculations from the initial (Lagrangian) skeleton
to the present day (Eulerian) skeleton. Potentially, the caustics-oriented skeleton can
approximate the correlation functions of vertices’s of the skeleton and average curve
lengths of the Eulerian skeleton. In practice this may allow us to analytically predict
the length of filaments and correlations between clusters. In the Morse-Smale-oriented
skeleton, such calculations will be less straightforward to perform.
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Chapter 12

Analytic Statistics of Caustics in one
Dimension

In this chapter we compute the statistics of caustics in the one-dimensional Zel’dovich
approximation performed on Gaussian random fields. In one dimension the Zel’dovich
approximation is exact up to shell crossing. The one-dimensional analysis is not only
valid in one-dimensional toy universes, but also in situations in higher-dimensional uni-
verses in which collapse occurs in only one direction.

Given the density perturbation in Fourier space δ̂, we can use the Poisson equation
to express the Fourier transform of the gravitational potential as Φ̂(k) = −4πGρ0

1
k2
δ̂.

The deformation tensor is the second spatial derivative of the potential T11 = ∂2Φ. We
will denote this with the eigenvalue notation λ1 , for consistency. The A3 catastrophes
occur at local maxima and minima of T11, and the A2 catastrophes occur at level sets
of T11 with nonnegative function value.

12.1 Eigenvalue distribution

The eigenvalue distribution of one-dimensional Gaussian random fields can be calculated
by considering the statistic Y = (T11). The corresponding covariance matrix is M =
〈T11T11〉 = σ2

4, with probability distribution

P (λ1) =
1

σ4

√
2π
e
− λ21

2σ24 .

This result is a normal distribution with the variance given by

σ2
4 =

∫ ∞
−∞

Pδ(k)W 2(k)
dk

2π
.

In this chapter we normalize the power spectrum such that the density fluctuations have
zero mean and unit variance. Since in one dimension the density coincides with the
eigenvalue, we have σ4 = 1.
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12.2 A2 point density

In a 1-dimensional universe, a fold catastrophe occurs at the points where the eigenvalue
λ1 coincides with 1/D+. The distribution of A2 singularities is given by

NA2(λ) = 〈|λ11|δ(1)(λ1 − λ)〉 = 〈|T111|δ(1)(T11 − λ)〉

=

∫ ∞
−∞
|T111|p(T11 = λ, T111)dT111.

The distribution p can be computed by considering the statistic Y = (λ1, λ11) =
(T11, T111) with covariance matrix and its inverse

V = 〈Y TY 〉 =

(
σ2

4 0
0 σ2

6

)
, C = V −1 =

(
1
σ2
4

0

0 1
σ2
6

)
.

The corresponding probability distribution is

p(λ1, λ11) =
1

4πσ4σ6
e
− λ21

2σ24
−λ

2
11

2σ26 .

The number density of A2 singularities can be analytically evaluated

NA2(λ) =

∫ ∞
−∞
|T111|p(T11 = λ, T111)dT111 =

σ6

πσ4
e
− λ2

2σ24 .

This distribution is very similar to the distribution of the eigenvalue. The number of
level crossings is proportional to the distribution of the eigenvalue with proportionality
constant √

2

π
σ6.

This is what one would intuitively expect. For fields in which the density has unit
variance, the density of A2 catastrophes is given by

NA2(λ) =
σ6

π
e−

1
2
λ2 .

This distribution is illustrated in figure 12.1 for different power-law power spectra and
Gaussian smoothing kernels.

12.3 A2 two-point correlation functions

The 2-point correlation of A2 singularities is

ξA2-A2(r, λ) =
NA2-A2(r, λ)

NA2(λ)2
− 1,
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for two A2 singularities at eigenvalues λ and µ separated by a spatial distance r. The
number density of two A2 singularities is

NA2-A2(r, λ, µ) =〈|λ11(0)||λ11(r)|δ(1)(λ1(0)− λ)δ(1)(λ1(r)− λ)〉
=〈|T111(0)||T111(r)|δ(1)(T11(0)− λ)δ(1)(T11(r)− λ)〉

=

∫∫
|T111(0)||T111(r)|p(T11(0) = λ, T111(0), T11(r) = λ, T111(r))

× dT111(0)dT111(r).

The probability distribution p(λ1(0), λ11(0), λ1(r), λ11(r)) can be computed using the
linear statistic Y = (λ1(0), λ1(r), λ11(0), λ11(r)) = (T11(0), T11(r), T111(0), T111(r)) with
the covariance matrix

V =


σ4(0)2 σ4(r)2 0 iσ5(r)2

σ4(r)2 σ4(0)2 −iσ5(r)2 0
0 iσ5(r)2 σ6(0)2 σ6(r)2

−iσ5(r)2 0 σ6(r)2 σ6(0)2

 .

Unfortunately Mathematica is unable to analytically evaluate this integral within several
days. We can however evaluate one of the double integrals. The integral of interest is of
the form

∫∫
|x||y|e−ax2−bxy−cy2−dx−ey−fdxdy,

with a, b, c, d, e, f real constants with a, b ≥ 0. Analytically integrated over x we obtain

∫∫
|x||y|e−ax2−bxy−cy2−dx−ey−fdxdy

=

∫ ∞
−∞

1

2
a−3/2e−y(cy+e)−f

(√
π(by + d)e

(by+d)2

4a erf

(
by + d

2
√
a

)
+ 2
√
a

)
dy.
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In the joint density of two A2 points, we have

x =T111(0)

y =T111(r)

a =−M−1
33 =

σ4
4

(
−σ2

6

)
+ σ2

4τ
4
5 + σ2

6τ
4
4

σ4
4

(
σ4

6 − τ4
6

)
− 2σ2

4σ
2
6τ

4
5 − σ4

6τ
4
4 +

(
τ2

4 τ
2
6 + τ4

5

)2
b =− 2M−1

34 = −
2
(
τ2

6

(
τ4

4 − σ4
4

)
+ τ2

4 τ
4
5

)
σ4

4

(
σ4

6 − τ4
6

)
− 2σ2

4σ
2
6τ

4
5 − σ4

6τ
4
4 +

(
τ2

4 τ
2
6 + τ4

5

)2
c =−M−1

44 =
σ4

4

(
−σ2

6

)
+ σ2

4τ
4
5 + σ2

6τ
4
4

σ4
4

(
σ4

6 − τ4
6

)
− 2σ2

4σ
2
6τ

4
5 − σ4

6τ
4
4 +

(
τ2

4 τ
2
6 + τ4

5

)2
d =− 2M−1

13 λ− 2M−1
23 µ =

2iτ2
5

(
λ(σ4τ6 + σ6τ4)(σ6τ4 − σ4τ6) + µ

(
−σ2

4σ
2
6 + τ2

4 τ
2
6 + τ4

5
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σ4

4

(
σ4

6 − τ4
6

)
− 2σ2

4σ
2
6τ

4
5 − σ4

6τ
4
4 +

(
τ2

4 τ
2
6 + τ4

5

)2
e =− 2M−1

14 λ− 2M−1
24 µ = −

2iτ2
5

(
λ
(
−σ2

4σ
2
6 + τ2

4 τ
2
6 + τ4

5

)
+ µ(σ4τ6 + σ6τ4)(σ6τ4 − σ4τ6)

)
σ4

4

(
σ4

6 − τ4
6

)
− 2σ2

4σ
2
6τ

4
5 − σ4

6τ
4
4 +

(
τ2

4 τ
2
6 + τ4

5

)2
f =−M−1

11 λ
2 − 2M−1

12 λµ−M
−1
22 µ

2

=
σ4

6

(
2λµτ2

4 − σ2
4

(
λ2 + µ2

))
+ τ4

6

(
σ2

4

(
λ2 + µ2

)
− 2λµτ2

4

)
+ σ2

6τ
4
5

(
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)
− 2λµτ4

5 τ
2
6

σ4
4

(
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6
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4σ
2
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4
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6τ
4
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4 τ
2
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5

)2 ,

with σi = σi(0) and τi = σi(r). This allows us to evaluate the A2-A2-correlation function.

12.4 A3 point density

In a 1-dimensional universe, the A3 singularities correspond to the maxima and minima
of the second derivative of the potential field. The number density of points with second
derivative λ1 = λ, vanishing third derivative λ11 and fourth derivative T1111 = λ111 is

NA+
3

(λ) = Nmax(λ) = 〈|λ111|δ(1)(λ1 − λ)δ(1)(λ11)1(−∞,0](λ111)〉

= 〈|T1111|δ(1)(T11 − λ)δ(1)(T111)1(−∞,0](T1111)〉

=

∫ 0

−∞
|T1111|p(T11 = λ, T111 = 0, T1111)dT1111

The probability distribution p(λ1, λ11, λ111) can be computed using the linear statistic
Y = (T11, T111, T1111) = (λ1, λ11, λ111) with the covariance matrix and inverse

V =

 σ2
4 0 −σ2

6

0 σ2
6 0

−σ2
6 0 σ2

8

 , C = V −1 =


σ2
8

σ2
4σ

2
8−2σ3

6
0 σ6

σ2
4σ

2
8−2σ3

6

0 1
σ2
6

0

σ2
6

σ2
4σ

2
8−2σ3

6
0

σ2
4

σ2
4σ

2
8−2σ3

6

 .
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with σ2
j =

∫∞
−∞ P (k)W 2(k)kj+4dk. This leads to the distribution

p(λ1, λ11, λ111) =
1

2π3/2
√

2σ2
4σ

2
6σ

2
8 − 2σ5

6

e
σ28(λ

2
1σ

2
6+λ

2
11σ

2
4)+σ

2
6(λ1λ11σ6(σ6+1)−λ211σ6+λ

2
111σ

2
4)

2σ26(σ
3
6−σ

2
4σ

2
8)

and a number density of A3 singularities

NA+
3

(λ) =
e

λ2σ28
2σ36−2σ24σ

2
8

8π3/2σ3
4σ6

(
√
πλ(σ6 + 1)σ6e

λ2σ26(σ6+1)2

8σ44σ
2
8−8σ24σ

3
6

(
erf(λσ6(σ6 + 1))

2σ4

√
2σ2

4σ
2
8 − 2σ3

6

+ 1

)

+ 2σ4

√
2σ2

4σ
2
8 − 2σ3

6

)
.

The number density of A−3 , or minima in the second derivative of the potential field
can be computed analogously,

NA−3 = Nmin(λ) = 〈|λ111|δ(1)(λ1 − λ)δ(1)(λ11)1[0,∞)(λ111)〉

= 〈|T1111|δ(1)(T11 − λ)δ(1)(T111)1[0,∞)(T1111)〉

=

∫ ∞
0
|T1111|p(T11 = λ, T111 = 0, T1111)dT1111

=
e

λ2σ28
2σ36−2σ24σ

2
8

8π3/2σ2
4σ6

2
√

2σ2
4σ

2
8 − 2σ3

6 −
√
πλσ6(σ6 + 1)(erfc(λσ6(σ6 + 1)))e

λ2σ26(σ6+1)2

8σ44σ
2
8−8σ24σ

3
6

2σ2
4

√
2σ2

4σ
2
8 − 2σ3

6

 .

The total density of A3 catastrophes or critical points is

NA3(λ) =

∫ ∞
−∞
|T1111|p(T11 = λ, T111 = 0, T1111)dT1111

=
e

λ2σ28
2σ36−2σ24σ

2
8

4π3/2σ2
4σ6

√πλ(σ6 + 1)σ6(erf(λσ6(σ6 + 1)))e
λ2σ26(σ6+1)2

8σ44σ
2
8−8σ24σ

3
6

2σ2
4

√
2σ2

4σ
2
8 − 2σ3

6

+ 2
√

2σ2
4σ

2
8 − 2σ3

6

 .

The distributions derived above are illustrated in figure 12.2 for several power spectra
and smoothing scales. Note that this is a scale space analysis of the problem, in which
different stages of evolution correspond with different scales σ.

12.5 A3 two-point correlation function

The 2-point correlation of A3 singularities is

ξA3-A3(r, λ, µ) =
NA3-A3(r, λ, µ)

NA3(λ)NA3(µ)
− 1,
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for two A3 singularities at eigenvalues λ and µ separated by a spatial distance r, and
the number density of the A3 singularities

NA3-A3(r, λ, µ) =〈|λ111||µ111|δ(1)(λ1 − λ)δ(1)(λ11)1(−∞,0](λ111)δ(1)(µ1 − µ)

× δ(1)(µ11)1(−∞,0](µ111)〉

=〈|T1111(0)||T1111(r)|δ(1)(T11(0)− λ)δ(1)(T111(0))

× 1(−∞,0](T1111(0))δ(1)(T11(r)− µ)δ(1)(T111(r))1(−∞,0](T1111(r))〉

=

∫∫
|T1111(0)||T1111(r)|p(T11(0) = λ, T111(0) = 0, T1111(0), T11(r) = µ

, T111(r) = 0, T1111(r))dT1111(0)dT1111(r).

The probability distribution p(λ1, λ11, λ111, µ1, µ11, µ111) can be computed using the lin-
ear statistic Y = (λ1, µ1, λ111, µ111, λ11, µ11) = (T11(0), T11(r), T1111(0), T1111(r), T111(0),
T111(r)) with the covariance matrix

V =



σ4(0)2 σ4(r)2 −σ6(0)2 −σ6(r)2 iσ5(r)2 0
σ4(r)2 σ4(0)2 −σ6(r)2 −σ6(0)2 0 −iσ5(r)2

−σ6(0)2 −σ6(r)2 σ8(0)2 σ8(r)2 −iσ7(r)2 0
−σ6(r)2 −σ6(0)2 σ8(r)2 σ8(0)2 0 iσ7(r)2

iσ5(r)2 0 −iσ7(r)2 0 −σ6(0)2 −σ6(r)2

0 −iσ5(r)2 0 iσ7(r)2 −σ6(r)2 −σ6(0)2

 .

In principle this is all we need to evaluate the two-point correlation function of A3 points.
However due to the same problems as in the A2 two-point correlation function we cannot
analytically evaluate this integral. Numerical evaluation turn out to be difficult, but
should be possible with current integration routines.

12.6 Correlation function in Zel’dovich approximation

We can compute the 2-point correlation function of catastrophes in Eulerian space by
adding the T1(0)−T1(r) term in the linear statistic and using the Zel’dovich approxima-
tion. Assume that initially the singularities A and B are separated by a spatial distance
x. Assume without loss of generality that A is initially in the origin and B is positioned
at x. After some time t, the point A and B have moved to D+(t)u(0) = −D+(t)T1(0),
and x+D+(t)u(x) = x−D+(t)T1(x) respectively. The separation at time t is

r = |x+D+(t)(T1(0)− T1(x))|.

The 2-point correlation function of A and B singularities is given by

ξA-B(r,D+, λ, µ) =
NA-B(r,D+, λ, µ)

NA(λ)NB(µ)
− 1
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with

NA-B(r,D+, λ, µ) =

∫ ∞
−x/D+

NA-B(r −D+U, λ, µ, U)dU

+

∫ −x/D+

−∞
NA-B(−r −D+U, λ, µ, U)dU.
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Figure 12.1: The density of A2 folds as function of the eigenvalue for power-law power
spectrum P (k) = kr and Gaussian smoothing.
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Figure 12.2: Density of A+
3 , A

−
3 and the total A3 points with smoothing σ = 1 depicted

in red, blue and black respectively
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Figure 12.3: Density of critical points in the eigenvalue field of the 1-dimensional defor-
mation tensor, with σ4 = 2, σ6 = 1, σ8 = 1. The blue line depicts the minima density.
The red line depticts the maxima density of A3 singularities. The black illustrates the
density of critical points.
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Chapter 13

Analytic Statistics of Caustics in two
Dimensions

In the previous chapter we derived analytic statistics of caustics in the one-dimensional
Zel’dovich approximation. In this chapter we extend these results to the two-dimensional
Zel’dovich approximation. We determine the expected densities of A4 and D4 catastro-
phes and determine the average length or flux of A2- and A3-lines. In one dimension,
the second derivative of the potential field, denoted by the eigenvalue λ1, coincides with
the initial density perturbation. In two dimensions this is no longer true since we have
two eigenvalues. In the first section of this chapter we derive the properties of the eigen-
values in two dimensions. In the subsequent chapters we derive the density of point
catastrophes and flux of line catastrophes.

13.1 Properties of eigenvalues

Let Ψ be a smoothed realization of a Gaussian random field, representing the potential
field. Entries of the Hessian matrix or deformation matrix of Ψ are denoted by the
second partial derivatives

Tij =
∂2Ψ

∂qi∂qj
.

According to Young’s theorem or the Schwarz integrability condition, the deformation
tensor of smooth functions is a real symmetric 2×2 matrix with three degrees of freedom
T11, T22, T12. For symmetric real-valued 2 × 2 matrices the eigenvalues λ1, λ2 are real.
We will always assume the ordering λ1 ≥ λ2. The corresponding eigenvectors v1, v2 are
orthogonal and can be assumed to be unit vectors in R2 with the Euclidean norm. In the
Hessian frame, i.e in the frame with eigenvector basis (v1, v2), the deformation tensor is
diagonal (

T11 T12

T12 T22

)
=

(
λ1 0
0 λ2

)
.

145



Chapter 13. Analytic Statistics of Caustics in two Dimensions 146

Denote the third and fourth derivatives of Ψ in the Hessian frame by

Tijk =
∂3Ψ

∂qi∂qj∂qk
, and Tijkl =

∂4Ψ

∂qi∂qj∂qk∂ql
,

with according to Schwarz’s theorem respectively four (T111, T112, T122, T222) and five
(T1111, T1112, T1122, T1222, T2222) degrees of freedom. We describe the second, third, and
fourth derivatives of Ψ by means of the statistic

YT = (T11, T22, T12;T111, T122, T222, T112;T1111, T2222, T1122, T1112, T1222),

consisting of 12 linear terms in Ψ.
The statistic YT can be written in terms of the eigenvalues and derivatives of the

eigenvalues in the direction of the eigenvectors, i.e. we can write YT in terms of

Yλ = (λ1, λ2;λ11, λ12, λ21, λ22;λ111, λ112, λ122, λ211, λ212, λ222),

with λij = ∇λi · vj and λijk = ∇(∇λi · vj) · vk. The eigenvalue statistic Yλ is nonlinear
with respect to Ψ. It is however a more natural choice of parameters than the YT statistic
since it is composed of the inner product of vector fields, which make Yλ invariant under
all isometries including rotations.

Starting with the general expression of the λi parameters in terms of Tij we can
rotate to the Hessian frame and obtain the expression

T11 = λ1, T22 = λ2, T12 = 0.

In the Hessian frame this substitution in combination with the condition T11 ≥ T22

simplifies the expressions of λij and λijk in terms of Tij , Tijk, and Tijkl to

T111 = λ21, T112 = λ22,

T122 = λ11, T222 = λ12,

T1111 = λ211 −
2λ2

22

λ1 − λ2
, T1112 = λ212 −

2λ11λ22

λ1 − λ2
,

T1122 = λ111 +
2λ2

22

λ1 − λ2
, T1122 = λ222 −

2λ2
11

λ1 − λ2
,

T1222 = λ112 +
2λ11λ22

λ1 − λ2
, T2222 = λ122 +

2λ2
11

λ1 − λ2
.

We can in principle go to higher derivatives. This however makes the expressions more
complicated. In this thesis we restrict ourself to statistics containing only derivatives of
fourth order. Note that Yλ consists of 13 terms whereas YT consists out of 12 terms.
The statistics Yλ are not independent. This however does not lead to practical problems
as long as we construct our calculations in a consistent way.

In going from the derivatives of the potential to the eigenvalues of the deformation
matrix, we perform a nonlinear coordinate transformation. We rotate from the parame-
ter space (T11, T22, T12) to the eigenvectors v1,v2. Originally the probabilities are com-
puted by integrating over the parameter space of interest with measure dT11∧dT22∧dT12.
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After the coordinate transformation we have to express this measure in terms of the mea-
sure dλ1∧dλ2. The analysis presented here is analogous to Bardeen et al. 1986, appendix
B [37].

We can express the deformation tensor T in terms of its eigenvalues λ1, λ2 and
corresponding eigenvectors v1 = (cosω, sinω)T , v2 = (− sinω, cosω)T parametrized by
ω ∈ [0, π) via eigenvalue decomposition. The angle ω is an element of the interval [0, π)
due to the ordering of eigenvalues. For

λ =

(
λ1 0
0 λ2

)
,

R = (v1, v2) =

(
cosω − sinω
sinω cosω

)
,

the eigenvalue decomposition states that the deformation tensor T is given by

T = RTλR =

(
T11 T12

T12 T22

)
=

(
λ1 cos2 θ + λ2 sin2 θ (λ2 − λ1) cos θ sin θ
(λ2 − λ1) cos θ sin θ λ1 sin2 θ + λ2 cos2 θ

)
.

The Jacobian matrix of the corresponding map

(λ1, λ2, ω) 7→ (T11, T22, T12) = (λ1 cos2 ω + λ2 sin2 ω, λ1 sin2 ω + λ2 cos2 ω,

(λ2 − λ1) cosω sinω)

is given by  cos2 ω sin2 ω (λ2 − λ1) sin(2ω)
sin2 ω cos2 ω (λ1 − λ2) sin(2ω)

− cosω sinω cosω sinω (λ2 − λ1) cos(2ω)

 .

The absolute value of the determinant of the Jacobian matrix is |λ1 − λ2|. Hence we
obtain the equality

dT11 ∧ dT22 ∧ dT12 = (λ1 − λ2)dλ1 ∧ dλ2 ∧ dω.

which we use when going from integrals over YT to Yλ. In three dimensions the Jacobian
is equal to (λ1−λ2)(λ1−λ3)(λ2−λ3) which is well known form Doroshkevich’s formula
of the distribution of eigenvalues in three dimensions.

For the remaining variables, the transformation from λ1, λ2, λ11, λ12, λ21, λ22, λ111,
λ112, λ122, λ211, λ212, λ222 to T1111, T1112, T1122, T1222, T2222 turns out to have unit Jaco-
bian. For this reason we can always switch between λ and Tijk, Tijkl variables without
inserting a Jacobian factor.

13.1.1 Doroshkevich formula in two-dimensions

The distribution of eigenvalues in three dimensions is denoted by the Doroshkevich
formula proposed in 1970 [24]

P (λ1, λ2, λ3) =
153

16
√

5π3
e−

3σ0
2

(2k21−5k2)(λ1 − λ2)(λ1 − λ3)(λ2 − λ3),
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with

k1 =λ1 + λ2 + λ3,

k2 =λ1λ2 + λ1λ3 + λ2λ3,

σ2
0 =

1

2π2

∫ ∞
0

k2P (k)W 2(k)dk.

In two dimensions we derive a similar result. Consider the statistic Y = (T11, T22, T12).
The corresponding covariance matrix is

V = 〈Y TY 〉 =

3
8σ

2
5

1
8σ

2
5 0

1
8σ

2
5

3
8σ

2
5 0

0 0 1
8σ

2
5

 ,

with determinant
(
σ5
2

)6
and the inverse of the covariance matrix

C = V −1 = σ−2
5

 3 −1 0
−1 3 0
0 0 8

 .

The distribution of the elements of the deformation tensor is

p(T11, T22, T12) =
2
√

2

π3/2σ3
5

e
− 3k21−8k2

2σ25

k1 = T11 + T22

k2 = T11T22 − T 2
12.

The distribution is independent of the choice of basis. For the symmetric matrix T ,
the characteristic polynomial is

det(T − λI) = λ2 − (T11 + T22)λ+ (T11T22 − T 2
12)λ = λ2 − k1λ+ k2.

The coefficients are invariant under coordinate transformations. Note that k1 is the
trace and k2 is the determinant of T . In terms of the ordered eigenvalues λ1, λ2 of the
deformation tensor,

k1 = λ1 + λ2,

k2 = λ1λ2.

By performing the change of variables on the measure dT11∧dT22∧dT12, and integrating
out the angular dependence of dλ1 ∧ dλ2 ∧ dω we obtain the eigenvalue distribution,

p(λ1, λ2) =
2
√

2

π1/2σ3
5

e
− 3(λ1+λ2)

2−8λ1λ2
2σ25 (λ1 − λ2).
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Figure 13.1: Individual eigenvalue distributions. The right line is the distribution of λ1,
the left line is the distribution for λ2 for σ5 = 1

13.1.2 Unconditional distribution of eigenvalues

The unconditional eigenvalue distributions can be obtained by integrating out the de-
pendence on one eigenvalue, i.e.

p(λ1) =

∫ λ1

−∞
p(λ1, λ2)dλ2 =

1

9
σ−2

5 e
− 2λ21
σ25

4
√

3λ1e
2λ21
3σ25

erf
(√

2
3λ1

)
σ5

+ 1

+ 6

√
2

π
σ5

 ,

p(λ2) =

∫ ∞
λ2

p(λ1, λ2)dλ1 =
1

9
σ−2

5 e
− 2λ22
σ25

6

√
2

π
σ5 −

4
√

3λ2

(
erfc

(√
2
3λ2

))
e

2λ22
3σ25

σ5

 .

These individual eigenvalue distributions are illustrated in figure 13.1. The distribution
of the eigenvalues is not identical due to the ordering condition λ1 ≥ λ2. The symmetry
around the vertical axis is due to the statistical symmetry under the operation Ψ→ −Ψ
of Gaussian random fields.

13.1.3 The distribution of eigenvalues constrained with derivatives

By including the third order derivatives in the statistics, the probability distribution of
the eigenvalues and their derivatives can be computed. Consider the linear statistic

Y = (T11, T22, T12;T111, T122, T222, T122)
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with covariance matrix

V = 〈Y TY 〉 =



3σ2
5

8
σ2
5
8 0 0 0 0 0

σ2
5
8

3σ2
5

8 0 0 0 0 0

0 0
σ2
5
8 0 0 0 0

0 0 0
5σ2

7
16

σ2
7

16 0 0

0 0 0
σ2
7

16
σ2
7

16 0 0

0 0 0 0 0
5σ2

7
16

σ2
7

16

0 0 0 0 0
σ2
7

16
σ2
7

16


,

and inverse

C = V −1 =



3
σ2
5
− 1
σ2
5

0 0 0 0 0

− 1
σ2
5

3
σ2
5

0 0 0 0 0

0 0 8
σ2
5

0 0 0 0

0 0 0 4
σ2
7
− 4
σ2
7

0 0

0 0 0 − 4
σ2
7

20
σ2
7

0 0

0 0 0 0 0 4
σ2
7
− 4
σ2
7

0 0 0 0 0 − 4
σ2
7

20
σ2
7


.

This leads to the probability distribution

p(T11, T22, T12, T111, T112, T122, T222) =
27
√

2

π3/2σ3
5σ

4
7

e
− 3k21−8k2

2σ25

× e
− 10(T2

112+T
2
122)−4(T111T122+T112T222)+2(T2

111+T
2
222)

σ27

k1 = T11 + T22

k2 = T11T22 − T 2
12.

In terms of the eigenvalues and derivatives of the eigenvalues, this probability distribution
reads

p(λ1, λ2, λ11, λ12, λ21, λ22) =
25
√

2

π7/2σ3
5σ

4
7

e
− 3(λ1+λ2)

2−8λ1λ2
2σ25

× e
− 10(λ11+λ22)−4(λ11λ21+λ12λ22)+λ

2
12+λ

2
21

σ27 .

Upon integrating over the eigenvalues λ1 and λ2 we have to multiply with the Jacobian
(λ1 − λ2).
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13.1.4 Density of points with specific eigenvalue configurations

The point density of points having eigenvalue λ1 = µ, λ2 = ν can be expressed as

Nλ(µ, ν) = 〈|λ11λ22 − λ12λ21|δ(1)(λ1 − µ)δ(1)(λ1 − ν)〉

=

∫
p(λ1 = µ, λ2 = ν, λ11, λ12, λ21, λ22)|λ11λ22 − λ12λ21|dλ11dλ12dλ21dλ22.

The probability distribution can be computed using the linear statistic

Y = (T11, T22, T12;T111, T122, T222, T112),

with covariance matrix

V = 〈Y TY 〉 =



3σ2
5

8
σ2
5
8 0 0 0 0 0

σ2
5
8

3σ2
5

8 0 0 0 0 0

0 0
σ2
5
8 0 0 0 0

0 0 0
5σ2

7
16

σ2
7

16 0 0

0 0 0
σ2
7

16
σ2
7

16 0 0

0 0 0 0 0
5σ2

7
16

σ2
7

16

0 0 0 0 0
σ2
7

16
σ2
7

16


,

and inverse covariance matrix

C = V −1 =



3
σ2
5
− 1
σ2
5

0 0 0 0 0

− 1
σ2
5

3
σ2
5

0 0 0 0 0

0 0 8
σ2
5

0 0 0 0

0 0 0 4
σ2
7
− 4
σ2
7

0 0

0 0 0 − 4
σ2
7

20
σ2
7

0 0

0 0 0 0 0 4
σ2
7
− 4
σ2
7

0 0 0 0 0 − 4
σ2
7

20
σ2
7


.

Rotating to the eigenvector system, and writing in eigenvalue coordinates, the corre-
sponding probability distribution can be written as

p(λ1, λ2, λ11, λ12, λ21, λ22) =
25
√

2

π7/2σ3
5σ

4
7

e
− 3(λ21+λ

2
2)−2λ1λ2

2σ25

× e
− 10(λ11+λ22)

2−4(λ11λ21+λ12λ22)+λ
2
12+λ

2
21

σ27 .
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This leads to the number density of points with λ1 = µ, λ2 = ν,

Nλ(µ, ν) =
25
√

2

π5/2σ3
5σ

4
7

e
− 3(µ2+ν2)−2µν

2σ25

×
∫
e
− 10(λ11+λ22)

2−4(λ11λ21+λ12λ22)+λ
2
12+λ

2
21

σ27 dλ11dλ12dλ21dλ22

∝e
− 3(µ2+ν2)−2µν

2σ25

Note that the result is a two-dimensional Gaussian distribution (see figure 13.3).

13.2 A3 point distribution

The A3 points correspond with the maxima and minima of the λ1 and λ2 fields. We first
consider a maximum of the λ1 field. A maximum with field value λ1 = λ satisfies the
conditions

λ1 =λ,

λ11 =λ12 = 0.

The number density of maxima in the λ1 field or A+
3 catastrophes corresponding to the

first eigenvalue in the Zel’dovich approximation is

NA+
3

=

〈∣∣∣∣ λ111 λ112

λ112 λ122

∣∣∣∣ δ(1)(λ1 − λ)δ(1)(λ11)δ(1)(λ12)

〉
=

∫
|λ111λ122 − λ2

112|p(λ1 = λ, λ2, λ11 = 0, λ12 = 0, λ111, λ112, λ122)(λ1 − λ2)

× dλ111dλ112dλ122dλ2,

integrated over the domain

(λ2, λ111, λ112, λ122) ∈ (−∞, λ]× (0,∞)× R×
(
λ2

112

λ111
,∞
)
.

The Hessian matrix of λ1 in this domain is positive definite. For the A−3 catastrophes of
the first eigenvalue field we integrate over the domain

(λ2, λ111, λ112, λ122) ∈ (−∞, λ]× (−∞, 0)× R×
(
−∞, λ

2
112

λ111

)
.

The Hessian matrix of λ1 in this domain is negative definite. For saddle points of the
field λ1 we integrate over the remaining parameter domain.

For A3 points occurring due to critical points in the λ2 field we can derive similar
formulas by interchanging λ1 by λ2 and λ1ij by λ2ij .
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13.3 A4 point distribution

In this thesis we consider statistics dependent on the first and second derivatives of the
eigenvalues λ1, and λ2. The conditions of swallowtail catastrophes however contain the
fifth derivative which is more difficult to handle in terms of derivatives of the field Ψ.
For this reason we keep the calculation of the swallowtail catastrophe for future research,
although the computation is very similar to the computation for the A3 catastrophes.

13.4 D4 distribution

The D4 points in the initial distribution are given by the points in which the two eigen-
values coincide. In therms of the eigenvalue statistics, the D4 points satisfy

λ1 = λ2 = λ,

for some λ. The number density of D4 points in a Gaussian initial density field is

ND4(λ) =Nλ(λ, λ) = 〈|λ11λ22 − λ12λ21|δ(1)(λ1 − λ)δ(1)(λ2 − λ)〉

=
25
√

2

π5/2σ3
5σ

4
7

e
− 2λ2

σ25

×
∫
e
− 10(λ11+λ22)−4(λ11λ21+λ12λ22)+λ

2
12+λ

2
21

σ27 dλ11dλ12dλ21dλ22

which is again a Gaussian. We evaluated the integral for several power spectra and
smoothing scales in figure 13.2. We observe that the amplitude of the density decreases
with increasing smoothing scale. This is what we expect since a larger smoothing sup-
presses the number of fluctuations and peaks in the field per area. We furthermore
observe that the variance increases for power-law power spectra with higher index. The
density is always maximal at zero, reflecting the statistical symmetry Ψ→ −Ψ of Gaus-
sian random fields.

13.5 A2 line length

The A2-lines of an initial density field are given by the level set of the two eigenvalue
fields of the deformation tensor

λ1 = λ or λ2 = λ.

The A1
2-line of the λ1 field corresponds to first shell crossing whereas the A2

2-line of the
λ2 field corresponds to shell crossing in collapsed regions. The differential lengths of the
two A2-lines in the two-dimensional Zel’dovich approximation are given by

LA1
2
(λ1) = π

∫
p(λ1, λ2, λ11, λ12)

√
λ2

11 + λ2
12(λ1 − λ2)dλ11dλ12dλ2,

LA2
2
(λ2) = π

∫
p(λ1, λ2, λ21, λ22)

√
λ2

21 + λ2
22(λ1 − λ2)dλ21dλ22dλ1.
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In oder to compute this distribution, consider the linear statistic Y = (T11, T22, T12;T222,
T122) with the covariance matrix

V = 〈Y TY 〉 =



3σ2
5

8
σ2
5
8 0 0 0
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8 0 0

0 0 0
5σ2

7
16 0

0 0 0 0
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7

16

 ,

and inverse covariance matrix

C = V −1 =



3
σ2
5
− 1
σ2
5

0 0 0

− 1
σ2
5

3
σ2
5

0 0 0

0 0 8
σ2
5

0 0

0 0 0 16
σ2
7

0

0 0 0 0 16
5σ2

7

 .

The distribution in eigenvalue coordinates is

p(λ, λ2, λ11, λ12) =
8
√

2

π3/2σ3
5σ

2
7

e
− 3(λ21+λ

2
2)−2λ1λ2

2σ25 e
− 10λ211−4λ11λ12+2λ212

σ27 ,

by which

LA1
2
(λ) =

8
√

2

π3/2σ3
5σ

4
7

e
− 3(λ21+λ

2
2)−2λ1λ2

2σ25

∫
e
− 10λ211−4λ11λ12+2λ212

σ27

√
λ2

11 + λ2
12dλ2dλ11dλ12

=

√
5σ7E(4

5)e
− 2λ2

σ25

(
√

6πλe
2λ2

3σ25

(
erf
(√

2
3
λ
)

σ5
+ 1

)
+ 3σ5

)
9πσ2

5

with E the complete elliptic integral of the first kind. The differential A2-line length is
computed for several power-law power spectra and smoothing scales in figure 13.4. We
observe that the mean of the differential A1

2-line length is independent of the smoothing
scale or index of power-law power spectrum. The line length is suppressed by the smooth-
ing which is expected since a smoothed field will have fewer wiggles in the A1

2-lines. The
line length increases as a function of the index of the power-law power spectrum.

We can evaluate the differential A2
2-line length in a similar fashion. We can however

also use the statistical symmetry of Gaussian random fields and use

LA2
2
(λ) = LA1

2
(−λ).
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Figure 13.5: Length of A3-lines

13.6 A3 line length

The length density of A3-lines with respect to the eigenvalue fields λ1, λ2 can be com-
puted in a similar fashion. Points on the A1

3- and A2
3-lines satisfy the condition

λ11 = 0, λ22 = 0,

respectively. The differential line length of the A1
3- and A2

3-lines is given by

LA1
3
(λ1) = π

∫ √
λ2

111 + λ2
112p(λ1, λ2, λ11 = 0, λ111, λ112)(λ1 − λ2)dλ111dλ112dλ2,

LA2
3
(λ2) = π

∫ √
λ2

221 + λ2
222p(λ1, λ2, λ22 = 0, λ221, λ222)(λ1 − λ2)dλ221dλ222dλ1.

We are unable to analytically evaluate this integral with Mathematica. For this reason
we evaluated the integral numerically for several power-law power spectra (see figure
13.5).

Note that all these results are considered in scale space. We should take the truncated
Zel’dovich approximation on different scales during at different stages of the evolution.
When small scales collapse we should consider a small σ, while when larger scales collapse
we should consider a larger σ.
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Chapter 14

Numerical Statistics of Caustics

In the previous chapters we studied the Zel’dovich approximation and caustics described
by catastrophe theory. Caustics play a prominent role in the evolution of large-scale
structure. In this chapter we numerically calculate the density of caustics in the one-
dimensional Zel’dovich approximation. For an explanation of the random fields used in
this chapter see chapter 8.

14.1 One-dimensional caustics

One-dimensional caustics are points with infinite density in one-dimensional matter dis-
tributions. They occur not only in one-dimensional models of the universe but also in
two- or three-dimensional universes in configurations in which the collapse occurs in one
direction, i.e. in regions in which shell crossing occurs in one direction while expanding
according to the Hubble law in the orthogonal directions.

In one dimension stable caustics can be classified as fold A2 and cusp A3 catastro-
phes. Catastrophes are introduced in the one-dimensional Zel’dovich approximation by
an A3 catastrophe which corresponds to maximum in the density field. The A3 catastro-
phe exists at a point in space-time. A moment after its appearance the A3 catastrophe
splits in two A2 catastrophes. The A2 catastrophes correspond with level crossings of
the density field. In principle two A2 catastrophes can subsequently annihilate via a A3

catastrophe corresponding with a minimum of the density field.
In this section we numerically determine the density of A3 and A2 catastrophes

for several power-law power spectra. We start by generating a realization of a one-
dimensional Gaussian random field v = (v1, v2, . . . , vn) ∈ Rn on a regular discrete lattice
with a given power spectrum. The algorithm used for the generation of the Gaussian
random field is described in chapter 8. We subsequently determine the difference of the
sign of the difference of v, i.e.

w = dif ◦ sign ◦ dif v

with dif v = (v2 − v1, v3 − v2, . . . , vn − vn−1) and sign v = (sign v1, . . . , sign vn) defining
sign(α) = 1 for α > 0, sign(α) = 0 for α = 0 and sign(α) = −1 for α < 0. The maxima
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Figure 14.1: Realization of one-dimensional Gaussian random fields with maxima and
level crossings

and minima of the realization v correspond with the positions in w in which w assumes
−2 and 2 respectively. The level crossings at the level λ ∈ R are determined by the
positions in

w = |dif ◦ sign(v − λ)|

in which w assumes 2. We increase the accuracy of the positions of the level crossings
by performing a linear interpolation with the two neighboring points identified in the
previous step and determining the place of intersection with the interpolated function.
A realization with the corresponding linear interpolation, maxima, and level crossings is
illustrated in figure 14.1.

In figure 14.2 the density of maxima, minima and level crossings at different field
values are plotted by the points. The lines are the predicted distributions, described in
chapter 10. The shape of the distributions is sensitive to the power spectrum while the
amplitude is sensitive to the smoothing scale.

14.2 Two-dimensional caustics in Lagrangian space

Two-dimensional caustics are points with infinite density in two-dimensional matter
distributions. They occur not only in two-dimensional models of the universe but also
in three-dimensional universes in configurations in which the collapse occurs in two
direction, i.e. in regions in which shell crossing occurs in two direction while expanding
according to the Hubble law in the orthogonal direction. In two dimensions the caustics
are described by cusps A3, swallow tail A4, umbilical points D4, and A2- and A3-lines.
In this section we numerically determine statistics of these catastrophes. The program
used for these computations is design by Johan Hidding [33].

Starting with a power-law power spectrum, we generate a two-dimensional realization
representing the density field. We subsequently determine the corresponding potential
field, the deformation tensor and the two corresponding eigenvalue fields. Finally the
catastrophes are identified. The density and eigenvalue fields for a specific realization
are plotted in figure 14.3.
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Figure 14.2: Density of maxima, minima and level crossings.
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(a) The density field with A3-lines and
A3, A4 and D4 catastrophes

(b) The first eigenvalue field, with the Aα
3 -

lines, Aα
3 , A

α
4 and D4 points.

(c) The second eigenvalue field, with the

Aβ
3 -lines, Aβ

3 , A
β
4 and D4 points.

Figure 14.3: Realization of two-dimensional Gaussian random fields with catastrophes
and A3-lines
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Figure 14.5: The cumulative length of A3-lines of the first and second eigenvalue fields.

Using the caustics of the realization, we determine the statistical behavior of the
different catastrophes. The density of the three and four dimensional catastrophes is
illustrated by the points in figure 14.4. The red lines are fits with Gaussian distributions.

For the initial conditions we can determine the A1
3- and A2

3-line length as a function
of the threshold of the eigenvalue field (see figure 14.5). The derivative of the A1

3- and
A2

3-line length with respect to the threshold is the differential length calculated in chapter
13.

14.3 Two-dimensional caustics in Eulerian space

Using the Zel’dovich approximation we can also estimate the behavior of the statistic
of the caustic skeleton in Eulerian space. The densities of point catastrophes, described
in the previous section, do not change. The two-point correlation function does, but
this lays outside the scope of this thesis. The A3-lines can stretch and contract during
structure formation. The A2-lines are introduced when considering the evolution in the
Zel’dovich approximation. In this section we study there evolution.

For different power-law power spectra, the A2-length at different eigenvalues in Eu-
lerian and Lagrangian space is illustrated in figure 14.6. We see that the A2-line length
corresponding to the first eigenvalue and second eigenvalue increases during the evolu-
tion. Note that the A2-line length of the first eigenvalue increases faster than the A2-line
length of the second eigenvalue. This can be explained by the fact that the displace-
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Figure 14.6: The A2-line lengths as a function of growing mode. The higher plot gives
the A2-line length of the first eigenvalue whereas the lower line gives the A2-line length
of the second eigenvalue.

ment of the matter field will be dominated by the eigenvector of the deformation tensor
corresponding to the first eigenvalue.

In figure 14.7 we show the Eulerian A3-line lengths for different power-law power
spectra at different stages of evolution as function of the threshold. We see that before
the first shell crossing occurs the total A3-line length corresponding to the first eigenvalue
increases while the total A3-line length corresponding to the second eigenvalue decreases.
After the first shell crossing has occurred, both total lengths increase.
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Figure 14.7: The A3-line lengths as a function the threshold of the eigenvalue field. The
higher plot gives the A3-line length corresponding to the first eigenvalue field whereas
the lower line gives the A3-line length corresponding to the second eigenvalue field.
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Chapter 15

Quantum Field Theory and Feynman
Diagrams

In this thesis, we so far studied Gaussian random field theory. In the subsequent chapters
we will apply effective field theory to large-scale structure formation. Both approaches
are closely related to quantum field theory. In this chapter we give a short introduction to
Lagrangian and Hamiltonian mechanics. We furthermore discuss quantum field theory
and indicate the relations to Gaussian random field theory and effective field theory. The
statements in this chapter will not be proven. All proofs can be found in any standard
textbook about classical mechanics and quantum field theory. For classical mechanics
you can for example consult ’Classical dynamics of particles and systems’ by Thornton
and Marion [66] or ’Mathematical methods of classical mechanics’ by Arnol’d [7]. For
quantum field theory see for example ’Quantum field theory in a nutshell’ by Zee [70] or
’An introduction to quantum field theory’ by Peskin and Schroeder [54].

15.1 Classical mechanics

Classical mechanics concerns the movement of objects as we experience in daily life. It
for example accurately describes spring systems, the flight of a bullets, the tides, the
orbit of the moon around the earth, the solar system, and the rotation of galaxies. It is
common practice to consider classical mechanics from the Newtonian, Lagrangian and
Hamiltonian perspective.

15.1.1 Newtonian mechanics

As taught in high school, classical mechanics can be formulated in terms of forces obeying
Newton’s laws of motion. These laws were first formulated in the Principia Mathematica
1687 by Newton.

1. An object either remains at rest or continues to move at constant velocity, unless
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acted upon by an external force 1,

2. The sum of the forces on an object
∑

F is equal to the mass m times the acceler-
ation a, i.e.

∑
F = ma,

3. When one object exerts a force on a second object, the second object simulta-
neously exerts a force equal in magnitude and opposite in direction on the first
object.

In making predictions of the trajectories of objects we systematically determine the
forces acting on a body, apply Newton’s second law

∑
F = ma and solve the resulting

differential equation. This procedure can in principle be applied to any problem in
classical mechanics. There exist however more efficient and elegant formulations.

15.1.2 Lagrangian mechanics

The first notable re-formulation of Newtonian classical mechanics was performed in 1788
by Joseph Louis Lagrange. In Lagrangian mechanics we work in the framework of energy,
completely dual to the framework of forces. The energy of an system is a measure of the
work performed on an object. When a force F is applied over an infinitesimal distance
ds while the object moves with velocity v, the change in the work W is defined as

dW = F · ds = F · vdt,

with dt the time it takes to travel distance ds with velocity v. Consider an object with
velocity v exposed to a force F(t) in the time interval [ti, tf ]. The work performed on
the object is defined as

W =

∫ tf

ti

F · vdt.

An object with a velocity v has a kinetic energy, since it takes work to get the object
into motion. Let an object be at rest at ti and let it be accelerated to a velocity vf in
the interval [ti, tf ]. The work exerted on the object in this time interval is∫ tf

ti

F · vdt =

∫ tf

ti

ma · vdt =

∫ tf

ti

m
∂v

∂t
· vdt =

∫ tf

ti

1

2

∂(mv2)

∂t
dt =

1

2
mv2

f ,

with m the mass of the object. Note that we assume that mass to be constant during
the acceleration. It is shown in any classical mechanics textbook that this result is
independent of the force F or the path followed in the interval [ti, tf ]. For this reason
we define the kinetic energy as

Ekin =
1

2
mv2.

1Assuming the observer views the object form an inertial reference system, i.e. the observer does not
accelerate.
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Forces, in the energy framework, are described by the potential energy U . The potential
energy U(x) at a point x is defined by the work it takes to move the object from some
fixed point to x. We define the potential energy to locally satisfy

F = −∇U.

From the conservation of energy it follows that the potential energy can be globally
defined. In Lagrangian mechanics the kinetic and potential energy are combined in the
Lagrange function, often called the Lagrangian

L(x,v, t) = Ekinetic − U =
1

2
mv2 − U.

In Lagrangian mechanics Newton’s laws of motion are replaced by the action principle.
The action principle states that the integral of the Lagrangian L over a path q(t), called
the action

S[q(t)] =

∫
L[q(t)]dt =

∫ [
1

2
mq̇2(t)− U [q(t)]

]
dt,

is an extremum for the motion of classical particles. The extremum condition can be
shown to be equivalent to the Euler-Lagrange equation

d

dt

∂L

∂v
=
∂L

∂x
.

Substitution of the definition of the Lagrangian in the Euler-Lagrange equation results
into Newton’s second law of motion. The Lagrangian formulation is more efficient since
we only have to take care of the scalar objects Ekin and U in stead of the vector objects
F which are in practice often more difficult to determine. It is an amazing property of
nature that no matter how complicated the motion, nature always tries to maximize or
minimize a simple functional which we call the action.

15.1.3 Hamiltonian mechanics

Lagrangian mechanics was in 1833 re-formulated by William Rowan Hamilton. In the
Hamilton formulation of classical mechanics we perform a so-called Legendre transfor-
mation on the Lagrangian to obtain the Hamilton function, often called the Hamiltonian.
Defining the conjugate momentum as

p =
∂L

∂v
,

the so called Hamiltonian H(x,p) is defined as the Legendre transformation of the
Lagrangian, i.e.

H(x,p) = ẋp− L.
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For the Lagrangian described above this amounts to

p =mv, and

H(x,p) =Ekin + U =
p2

2m
+ U.

Note that for the classical one-particle Lagrangian discussed above, the conjugate mo-
mentum coincides with the familiar linear momentum known in Newtonian mechanics.
The Hamiltonian for such a Lagrangian coincides with the total energy of the system.
In the Hamiltonian formalism, the Euler-Lagrange equation transforms to Hamilton’s
equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

This very symmetric formulation gives great practical ease. The total energy of the
system directly leads to the equations of motion. There exist further re-formulations
of Newtonian mechanics. For the discussion below the Lagrangian and Hamiltonian
formulation however suffice.

15.2 Path integral formulation of quantum physics

Classical mechanics is deterministic. The Newtonian, Lagrangian or Hamiltonian for-
mulation lead to a set of differential equations which one can uniquely solve for some
set of initial conditions. Quantum mechanics is not deterministic. The best one can do
is to predict probabilities for events to occur. In a measurement, the wave function col-
lapses with some probability to some state. These probabilities are calculated in terms
of amplitudes, i.e. the absolute square of the amplitude is the probability. In quantum
mechanics, the amplitude to propagate from a point qI to a point qF in time T is given
by

〈qF |e−iHT |qI〉,

with H the Hamiltonian of the particle, and |qI〉 and 〈qF | the initial and final state in
Dirac notation. The probability for the particle to propagate form qI to qF is given by

|〈qF |e−iHT |qI〉|2.

For the path integral formulation of quantum mechanics we divide the time T into N
segments each lasting δt = T/N . We can now write

〈qF |e−iHδte−iHδt . . . e−iHδt|qI〉.

Let the state of the particle at the ith time segment be qi. If the states are properly
normalized, i.e. 〈q′|q〉 = δ(d)(q′−q) and from a complete set of states, i.e.

∫
dq|q〉〈q| = 1,
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we can write the amplitude for propagating form qI to qF as

〈qF |e−iHT |qI〉 =

N−1∏
j=1

∫
dqj

 〈qF |e−iHδt|qN−1〉〈qN−1|e−iHδt|qN−2〉 . . . 〈q1|e−iHδt|qI〉.

For the Hamiltonian given in the previous section

H =
p̂2

2m
+ U,

with p̂ the momentum operator in stead of the momentum variable, each term in this
expression can be individually evaluated,

〈qj+1|e−iδt(p̂
2/(2m)+U)|qj〉 =

∫
dp

2π
〈qj+1|e−iδt(p̂

2/(2m)+U)|p〉〈p|qj〉

=

∫
dp

2π
e−iδt(p

2/(2m)−U(qj))〈qj+1|p〉〈p|qj〉

=

∫
dp

2π
e−iδt(p

2/(2m)−U(qj))eip(qj+1−qj)

=

(
−im
2πδt

)1/2

eiδt(m/2)[(qj+1−qj)/δt]2−iδtU(qj),

where the momentum states |p〉 are normalized by
∫ dp

2π |p〉〈p| = 1 and 〈q|p〉 = eipq. The
state |p〉 is an eigenstate of the operator p̂ with eigenvalue p, i.e. p̂|p〉 = p|p〉. In the
last line we used the Gaussian integral. Substituting this term in the amplitude for the
propagation from qI to qF gives

〈qF |e−iHT |qI〉 =

N−1∏
j=1

∫
dqj

(−im
2πδt

)N/2
eiδt(m/2)

∑N
j=0[(qj+1−qj)/δt]2−iδt

∑N
j=0 U(qj).

In the setup of the path integral formulation, we divided the propagation time T in N
intervals with duration δt. We subsequently evaluated the integral for each step. The
number of steps N is however artificial. We remove the dependence on N by dividing
the propagation time T in infinitely many intervals of infinitesimal duration such that
N∆t = T . In this limit the amplitude to travel form qI to qF in a time T becomes

〈qF |e−iHT |qI〉 = lim
N→∞

(−im
2πδt

)N/2N−1∏
j=1

∫
dqj

 ei
∫ T
0 [ 12mv

2−U]dt,

which is often written as

〈qF |e−iHT |qI〉 =

∫
eiS[q(t)]Dq(t).
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The term Dq(t) represents an integral over all possible paths q(t). This is known as the
path integral formalism. It is one of the ways to quantize2 a dynamical system. The
path integral formation was mathematically first invented by Dirac. However Feynman
was the first to interpret the path integral as an integral over all possible paths between
two points. According to Feynman, fundamental particles are ’free spirits’. They evolve
simultaneously in all possible ways, violating classical laws, and are only pinned down
in measurements.

15.3 Quantum field theory

The path integral formalism, derived in the previous section, can be used to obtain a
quantum field theory. We start by replacing the trajectory q(t) by a field ϕ(t, x) repre-
senting a particle (species). From this moment onwards we will suppress the boldface
notation for vectors. Such a field assumes values at all points of spacetime. We can
write the action in the general form

S[ϕ] =

∫
d4xL(ϕ),

with L the Lagrangian density, and d4x = dtdxdydz. The Lagrangian density, often
abbreviated by the Lagrangian, contains all the physical input. In principle we can
include many field and use the quantum electrodynamics, quantum chromodynamics, or
standard model Lagrangian, modeling the electromagnetic force, strong nuclear force or
combined forces respectively. In this chapter we only consider the general framework of
quantum field theory and only study two single field toy models. The Lagrangian in one
field is generally of the form

L(ϕ) =
1

2
(∂ϕ)2 − 1

2
m2ϕ2 − g

3!
ϕ3 − λ

4!
ϕ4 + . . . ,

with

(∂ϕ)2 = ∂µϕ∂
µϕ =

(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2

−
(
∂ϕ

∂y

)2

−
(
∂ϕ

∂z

)2

often used in relativistic notation. The constants m, g, λ turn out to be parameters
representing the mass and interaction strengths of the field ϕ respectively. We here for
simplicity only consider the case in which all interaction terms are zero and the case in
which only the interaction term λ is nonzero. The first case is called the free or Gaussian
theory. The second case is known as the ϕ4 theory. To summarize, quantum field theory
can be seen as evaluating path integrals like∫

e
i
~
∫

d4x[ 12 (∂ϕ)2− 1
2
m2ϕ2− g

3!
ϕ3− λ

4!
ϕ4−... ]Dϕ.

We unfortunately only know how to evaluate very specific integrals of this kind. We
however do know how approximate the integral using perturbation theory. In the ϕ4-
theory, we illustrate the perturbation theory by deriving so-called Feynman diagrams.

2A procedure to transform classical mechanics to quantum mechanics.
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15.3.1 Gaussian quantum field theory

In this section, we start with the free or Gaussian theory containing no interaction terms.
The action of the free theory is

S[ϕ] = (∂ϕ)2 −m2ϕ2.

For mathematical convenience we will add a source term Jϕ to the Lagrangian, which
leads to the path integral

Z(J) =

∫
e
i
~
∫
d4x[ 12 (∂ϕ)2− 1

2
m2ϕ2+Jϕ]Dϕ.

This path integral is very similar to the definition of Gaussian random fields in the con-
tinuous limit. After a Wick rotation, the theory becomes Euclidean and coincides with
the definition of Gaussian random fields. Bary Simon extensively studied such theories
in statistical mechanics [63].

Using integrating by parts and assuming that all boundary term vanishes, the am-
plitude for the propagation from qI to qF can be expressed as

Z(J) =

∫
e
i
~
∫
d4x[ 12ϕ(∂2+m2)ϕ+Jϕ]Dϕ.

Using Gaussian integrals, we can evaluate this path integral,

Z(J) = Z(J = 0)e−
i
2

∫∫
d4xd4yJ(x)D(x−y)J(y) = Z(J = 0)eiW [J ],

with the propagator or Green function D satisfying the condition

−(∂2 +m2)D(x− y) = δ(4)(x− y).

Using the Fourier representation of the Dirac delta function

δ(4)(x− y) =

∫
d4k

(2π)4
eik(x−y),

we can derive an explicit expression for the propagator

D(x− y) =

∫
d4k

(2π)4

eik(x−y)

k2 −m2
.

The propagator in quantum field theory plays the role of the inverse of the two-point
correlation in Gaussian field theory. From a quantum field theory perspective, the prop-
agator completely solves the free theory. Unfortunately this does not directly lead to
many physical insights and predictions. The theory does not contain any interactions
and for that reason cannot influence other particles. Particles in the theory cannot be
measured.
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15.3.2 ϕ4 theory and Feynman diagrams

In the previous section we solved the free theory. In this section we introduce an inter-
action term. For simplicity we only consider ϕ4 theory with a nonzero λ term. Unfor-
tunately we do not know how to solve the resulting path integral

Z(J) =

∫
e
i
~
∫
d4x[ 12 (∂ϕ)2− 1

2
m2ϕ2− λ

4!
ϕ4+Jϕ]Dϕ.

Instead we can develop a perturbation theory in terms of the coupling λ and show how
to represent perturbation series in Feynman diagrams. We will peruse the Schwinger
way to perturbation theory.

We start by rewriting the path integral as a Taylor series in λ

Z(J, λ) =

∫
e
i
~
∫
d4x[ 12 (∂ϕ)2− 1

2
m2ϕ2+Jϕ]

∞∑
j=1

[
− iλ

4!~
∫

d4xϕ4
]j

j!
Dϕ

=

∞∑
j=1

[
− iλ

4!~
]j

j!

∫
e
i
~
∫
d4x[ 12 (∂ϕ)2− 1

2
m2ϕ2+Jϕ]

[∫
d4xϕ4

]j
Dϕ

=
∞∑
j=1

[
− iλ

4!~
∫

d4w δ
δJ(w)

]j
j!

∫
e
i
~
∫
d4x[ 12 (∂ϕ)2− 1

2
m2ϕ2+Jϕ]Dϕ

=e−(i/4!)λ
∫

d4w[δ/δJ(w)]4
∫
e
i
~
∫
d4x[ 12 (∂ϕ)2− 1

2
m2ϕ2+Jϕ]Dϕ

=Z(J = 0, λ = 0)e
− i

4!
λ
∫

d4w[ δ
δJ(w)

]4
e−

i
2

∫∫
d4xd4yJ(x)D(x−y)J(y)

=Z(J = 0, λ = 0)e
− i

4!
λ
∫

d4w[ δ
δJ(w)

]4
eiW [J ],

where we used the functional derivative δ
δJ(w) to pull down ϕ terms down from the

exponent and we used the free theory path integral. So far we have not approximated
anything. In practice we do not know how to systematically calculate all the derivatives
of eiW [J ] and sum them. We can only compute the terms in the sum of the third line for
increasing power in λ. This perturbation is trustworthy for small interaction strengths,
i.e. with λ� 1. For strong coupled interactions we can not use this technique.

For the terms linear in λ we start by replacing e
− i

4!
λ
∫

d4w[ δ
δJ(w)

]4
by− i

4!λ
∫

d4w[ δ
δJ(w) ]4

and eiW [J ] by i4

4!24

[∫∫
d4xd4yJ(x)D(x− y)J(y)

]4
, resulting in the expression

− i

4!
λ

∫
d4w[

δ

δJ(w)
]4
i4

4!24

[∫∫
d4xd4yJ(x)D(x− y)J(y)

]4

=− iλ
∫
D(xa − w)D(xb − w)D(xc − w)D(xd − w)

× J(xa)J(xb)J(xc)J(xd)d
4xad

4xbd
4xcd

4xdd
4w.
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We have to take all possible contractions of the positions xa, xb, xc and xd with the point
w. The term

−iλ
∫
D(xa − w)D(xb − w)D(xc − w)D(xd − w)d4w

should be interpreted as the amplitude for two identical particles initially positioned at
xa and xb to travel to w and scatter to the final positions xc and xd. Note that every path,
i.e. the paths xa, xb → w and w → xc, xd correspond to a propagator. Feynman had
this insight and used this to draw Feynman diagrams and compute cross sections. The
Feynman diagram of the term calculated above is represented by the diagram in figure
15.1a. The lines correspond with the propagator, the vertex with a factor iλ and the
integral over all possible positions of w. In 1949, Freeman Dyson derived the diagrams
from the formal work of Julian Schwinger and Shin-Itiro Tomonaga. The Feynman rules
for ϕ4 theory are

1. Draw a connected Feynman diagram and attach to every line a momentum such
that conservation of momentum is satisfied in very vertex.

2. Every vertex corresponds to a coupling −iλ.

3. Each line corresponds with a propagator with some momentum k. Multiply the
propagators.

4. Integrate over the momenta which are not fixed by conservation of momentum.
This is often called, integrating over loops.

5. Multiply by some symmetry factor.

The Feynman rules of the ϕ4 theory are simple and transparent. This is due to the sim-
plicity of the model. Note however that the theory already contains the most prominent
characteristics of quantum field theory. We have simple tree diagrams, but also infinite
series of quantum correction in the form of loop diagrams (Feynman diagrams consisting
of loops over which we have to integrate). The technique can be used in more physi-
cal theories. For quantum electrodynamics, quantum chromodynamics or the standard
model, we simply use a more complicated Lagrangian and derive a more extended list
of Feynman rules. See figure 15.1b for a Feynman diagram in quantum electrodynam-
ics. Generally the vertices correspond to interactions while a the lines correspond to
propagators. In chapter 16, we derive Feynman rules for standard perturbation theory.
We will see that many properties of Feynman diagrams in quantum field theory can
be translated to standard perturbation theory. This begs the question, whether these
properties are really quantum mechanical and not an artifact of the methodology.

15.4 Effective field theory in quantum systems

Quantum field theory gives a good description of physics at the quantum scale. It allows
us to calculate cross sections between the fundamental particles from the Lagrangian
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(a) tree diagram in ϕ4 theory

e− e−

e− e−

γ

(b) Electron scattering in quantum electro-
dynamics

Figure 15.1: Feynman diagrams

of the standard model. It can predict the interactions between, leptons, quarks and
bosons. However in some situations, we are not interested in or do not know the physics
of the smallest scales. For example, in nuclear physics we do not want do deal with the
individual quarks. We instead would like to deal with protons, neutrons and electrons.
Another example is the standard model in the setting of string theory. In string theory,
all fundamental particles are interpreted as vibrations of strings. If string theory is
correct, it should reproduce the standard model in on the scale of quarks, or energy
scales probed by collision experiments. In both situations we can use effective field
theory.

An effective field theory can be obtained from a fundamental theory by integrating
over specific scales. In practice we can start from the fundamental action and path
integral, and integrate over the ultraviolet degrees of freedom. This results in a path
integral over the interesting degrees of freedom with a modified action. This is the
effective action. This effective theory is an approximation but will make it more easy to
perform physical analysis.

Effective theories, in which the underlying theory is not well known have appeared in
many stages during the development of high energy physics. The theories are normally
phenomenological. They are constructed out of empirical data and help us find the
underlying fundamental theory. We should however always keep the limitations of the
theory in mind. On high energy scales, the effective theory is supposed to be inadequate.

In chapters 17 and 18, we consider effective field theory in large-scale structure
formation. By integrating out the small scale structures, we obtain a theory of the
large scale structures which includes the influence of the small scale on the large scale
fluctuations.



Chapter 16

Standard and Effective Perturbation
Theories of Large-Scale Structure

Standard perturbation theory expands the equation of motion in terms of some physical
quantity. In Eulerian perturbation theory we expand in terms of the density perturba-
tion. In Lagrangian perturbation theory we expand in terms of the displacement field.
The expansion is valid as long as the small-scale non-linear behavior does not signifi-
cantly influences the linear or mildly non-linear dynamics. In effective field theory we
start with the equation of motion and integrate over the small scale physics. In this way
we incorporate the influence of the small scale on the large scale, leading to a greater va-
lidity of the expansion. In this chapter we systematically develop standard perturbation
theory and effective field theory. We follow the approach of Sean Carroll et al. [17].

16.1 Standard perturbation theory

Standard Perturbation Theory (SPT) can be used to approximate solutions of differential
equations. In dynamical systems, this often implies approximating the equations of
motion. Consider a set of differential equations, hereafter called the equations of motion,
of the form

Dijφj −
1

2
M i
jkφ

jφk − 1

3!
N i
jklφ

jφkφl + · · · = 0.

The ‘vector’1 φ contains all physically relevant quantities, such as position or density.
In this chapter we will assume that φ contains the Fourier transform of the quantities of
interest. The matrix D contains time derivatives and terms linear in φ. We here assume
that D only contains first order derivatives. Higher order derivatives can always be
implemented via extra parameters in φ. The matrices M,N, . . . contain the coefficients
of the couplings between the different components of φ. Let M i

jk, N
i
jk, . . . , without loss

of generality, be symmetric in the lower indices. The field φ can be written as a series

1The vector φ does not transform as a vector under rotations and translations.
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in a perturbation parameter ε,

φiSPT = εφi(1) + ε2φi(2) + ε3φi(3) + . . .

Substituting the series in the equation of motion and sorting by powers of ε we obtain a
set of differential equations

Dijφ
j
(1) =0

Dijφ
j
(2) =

1

2
M i
jkφ

j
(1)φ

k
(1)

Dijφ
j
(3) =

1

2

(
M i
jkφ

j
(1)φ

k
(2) +M i

jkφ
j
(2)φ

k
(1)

)
+

1

3!
N i
jklφ

j
(1)φ

k
(1)φ

l
(1)

=M i
jkφ

j
(1)φ

k
(2) +

1

3!
N i
jklφ

j
(1)φ

k
(1)φ

l
(1)

. . .

In large-scale structure formation problems we are interested in the evolution of density
fluctuations, evolving due to gravity. We evolve an initial distribution φiin at time τin
to a distribution φ at time τ . The first equation can be solved by the retarded Green
function

φi(1)(τ) = Gij(τ, τin)φjin,

with the Green function G satisfying the condition

DijG
j
k(τ ; τin) = δikδ

(1)(τ − τin).

By substituting φ(1) in the corresponding differential equation, we can easily check that
this expression works. The second correction φ(2) can be solved in terms of φ(1) and the
third correction can subsequently be solved by using the solution of φ(1) and φ(2). This
leads to a tower of solutions,

φi(2)(τ) =
1

2

∫ τ

τin

dτ ′Gij(τ, τ
′)M j

kl(τ
′)φk(1)(τ

′)φl(1)(τ
′),

φi(3)(τ) =

∫ τ

τin

dτ ′Gij(τ, τ
′)M j

kl(τ
′)φk(2)(τ

′)φl(1)(τ
′)

+
1

3!

∫ τ

τin

dτ ′Gij(τ, τ
′)N j

klm(τ ′)φk(1)(τ
′)φl(1)(τ

′)φm(1)(τ
′),

in which all corrections can be iteratively solved. In practice often only the lower order
corrections are relevant.

16.1.1 Solutions and tree diagrams

Richard Feynman provided a systematic pictorial way to perform such an expansion in
quantum field theory. We can perform an analogous derivation in the standard pertur-
bation theory setting. The terms φi(1), φ

i
(2), φ

i
(3), can be represented by the diagrams of
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τin

τ

φi(1)(τ) = Gij

φjin

τin

τ

φi(2)(τ) =

Gij

M j
kl

Gkn Glm

φnin φmin

τin

τ

φi(3)(τ) = 2×

Gij

M j
kl

Mk
mn

Gmo Gnp

Glq

φoin φpin φqin

τin

τ

+

Gij

N j
klm

Gkn
Glo

Gmp

φnin φoin φpin

Figure 16.1: Feynman diagrams of first, second and third perturbations

figure 16.1. The lower and upper horizontal line represent φin and φ respectively. The
vertices on the lower horizontal line correspond to the initial conditions φin. The line
segments correspond to the Green function G and play the role of the propagator. The
vertices in the diagram correspond to the interaction terms. The three point vertices
correspond to M , the four point vertices to N . We finally integrate over the times at
which the vertices are evaluated. Note that the number of vertices on the horizontal
initial field line is equal to the order of the perturbation. The proportionality constants
of the diagrams are symmetry factors.

16.1.2 Correlation functions and loop diagrams

So far, the framework of Feynman diagrams in standard perturbation theory is com-
pletely analogous to tree diagrams in quantum field theory. The evolution of an initial
condition in time correspond to a onshell interaction2. In quantum field theory we are
however not restricted to onshell interactions and can consider loop diagrams in which
we integrate over the momentum ’running in the loop’ (see figure 16.3). It turns out that
the analogy extends further than tree diagrams. We here show how correlation functions
in standard perturbation theory can be interpreted as loop diagrams.

Using standard perturbation theory, we can approximate correlation functions. Up

2Interactions in which all momenta of the lines are fixed by the conservation of momentum.
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τin

τ

φ(4)(τ) = + 2×

τin

τ

Figure 16.2: The Feynman diagram of the fourth perturbation, assuming N i
jkl = 0 for

all indices

Figure 16.3: A loop diagram in quantum electro dynamics

to fourth order in ε, the two-point correlation function of φ is

〈φSPTφSPT 〉 =〈(εφ(1) + ε2φ(2) + . . . )(εφ(1) + ε2φ(2) + . . . )〉
=ε2〈φ(1)φ(1)〉+ 2ε3〈φ(1)φ(2)〉+ ε4(2〈φ(1)φ(3) + 〈φ(2)φ(2)〉) + . . .

Lets first analyze the quadratic correction

〈φ(1)φ(1)〉.

We can substitute the solution of φ(1) in terms of the initial condition φln and pull the
expectation value brackets towards the initial conditions,

〈φi(1)(k1)φj(1)(k2)〉 =〈Gik(τ, τin)φkin(k1)Gli(τ, τin)φlin(k2)〉

=Gik(τ, τin)Gli(τ, τin)〈φkin(k1)φlin(k2)〉
=(2π)dδ(d)(k1 + k2)Gik(τ, τin)Gli(τ, τin)P ij(k1),

with P the power spectrum of the initial conditions and d the number of spatial dimen-
sions. This term in the correlation function can be represented by two lines, connected
by the power spectrum (see figure 16.4). By performing a similar analysis on the cubic
correction

〈φ(1)φ(2)〉,
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we can show that it vanishes. This is due to the fact that the expectation value for the
product of an odd number of Gaussian statistics is zero. The fourth order correction
turn out to be more complex. First consider the two-point correlation between the first
and third order correction

〈φ(1)φ(3)〉.

We can again substitute the solutions and pull the expectation value brackets towards
the initial conditions. Under the assumption that N = 0, the correlation function turns
out to be

〈φi(1)(k1)φ(3)(k2)〉 =(2π)dδ(d)(k1 + k2)

×
∫ τ

τln

dτ ′
∫ τ ′

τln

dτ ′′
∫

dq

(2π)d
Gjk(τ, τ

′)Mk
lm(k1,q,k1 − q)Gmn (τ ′, τ ′′)

×Mn
op(k1 − q,−q,k1)Giq(τ, τln)Gpr(τ

′′, τln)P qr(k1)

×Gls(τ ′, τln)Got (τ
′′, τln)P st(q).

In terms of Feynman diagrams, this expression can be expressed as the contraction
between first and third order correction, as illustrated in figure 16.4. One of the legs
of the third order correction is connected with the first order correction while the other
two legs are connected with each other. We subsequently integrate over the momentum
running in the loop. In our example we integrate over the momentum q and weight
it with the power spectrum. Another interesting correlation function is the two-point
correlation function of the second order corrections

〈φ(2)φ(2)〉.

The corresponding loop diagram, assuming M = 0 is illustrated in figure 16.4. We again
integrate over the momentum running in the loop. Note that not all diagrams can be
completely contracted in this fashion. We need an even number of vertices on the lower
horizontal line. It can however be proven that the correlation function of diagrams with
an odd number of vertices on the lower horizontal line are zero for Gaussian random
field initial conditions.

16.2 Effective equation of motion

In the previous section we developed standard perturbation theory in a systematic fash-
ion using Feynman-like diagrams. In this section we smooth the equations of motion
with a kernel WΛ and determine the corresponding perturbation theory. We only take
into account the linear and quadratic terms in the equation of motion, i.e. only D and
M can be nonzero. It is straightforward to extend the approach to higher orders.

In this chapter we will use the smoothing kernel

ŴΛ(k) = Θ(Λ− |k|)
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τin

τ

〈φ(1)(τ)φ(1)(τ)〉 =

τin

τ

〈φ(1)(τ)φ(3)(τ)〉 =

τin

τ

〈φ(2)(τ)φ(2)(τ)〉 =

Figure 16.4: The Feynman diagram of the two-point correlation function of the second
and third perturbation

although other kernels can easily be implemented. For variables φi we define the long
wavelength fluctuations to be

φiL(k) = ŴΛ(k)φi(k)

for all k and the sort wavelength fluctuations as

φS = φ− φL.

Assuming the operator D is diagonal in momentum space

0 =DijφiL −
1

2
ŴΛM

i
jkφ

jφk

=DijφiL −
1

2
ŴΛM

i
jkφ

j
Lφ

k
L − ŴΛM

i
jkφ

j
Sφ

k
L −

1

2
ŴΛM

i
jkφ

j
Sφ

k
S .

The first two terms represent dynamics of long wavelength physics. The third term the
interaction between long and short and the fourth self interactions of sort-wavelength
physics. So far we have only rewritten the equation of motion. In an effective field
theory we want to express φS in terms of φL and integrate over the short-wavelength
physics. In order to do this, consider the difference between the equation of motion and
the equation above

0 = Dijφ
j
S −

1

2
(1− ŴΛ)M i

jkφ
j
Sφ

k
S − (1− ŴΛ)M i

jkφ
j
Lφ

k
S −

1

2
(1− ŴΛ)M i

jkφ
j
Lφ

k
L.

If we let φL be a background field we can write the short wavelength field φS as a function
of the long wavelength field φS [φL] and substitute this equation in the equation of motion
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derived above. If we could analytically obtain φS [φL], there would be no reason to use
effective field theory. We would have solved the complete non-linear problem, and have
simultaneously solved one of the millennium problems. We can however write φS as a
Taylor series in φL and obtain coefficients from observations or N-body simulations. The
Taylor series reads

φiS(τ) = φiS0(τ) +

∫ τ

τin

∂φiS(τ)

∂φjL(τ ′)

∣∣∣∣
φL=0

φjL(τ ′)dτ ′ + . . . ,

with φS [φL = 0] = φS0 the solution of the differential equation for φS with φL = 0
leading to the condition

0 = Dijφ
j
S −

1

2
(1− ŴΛ)M i

jkφ
j
Sφ

k
S .

The integral in the second term of the expansion runs from the initial time τin to the time
τ at which it is evaluated. This integral contains the history of small scale fluctuations
as a function of large scale. This is one of the fundamentally different properties of
effective field theory for large-scale structures with respect to effective field theory in
particle physics in which no such integral appears.

We can include higher-order terms, but will in this thesis restrict our calculation
to the linear order. Cutting of the Taylor expansion to linear order and inserting the
equation in the equation of motion we obtain the effective equation of motion

0 =Dijφ
j
L −

1

2
ŴΛM

i
jkφ

j
Lφ

k
L − ŴΛM

i
jkφ

j
S0φ

k
L −

1

2
ŴΛM

i
jkφ

j
S0φ

k
S0

− ŴΛM
i
jkφ

j
S0

∫ τ

τin

∂φkS(τ)

∂φlL(τ ′)
φlL(τ ′)dτ ′ − ŴΛM

i
jkφ

j
L

∫
τin

∂φkS(τ)

∂φlL(τ ′)
φlL(τ ′)dτ ′,

in which the differentials are evaluated at φL = 0.

16.2.1 Effective perturbation theory

We now use the standard perturbation theory developed in the section above to derive
a perturbative solution of the effective field equation of motion derived above. The long
wavelength field can be written as

φiL = ε
(
φiL(1) + ∆φiL(1)

)
+ ε2

(
φiL(2) + ∆φiL(2)

)
+ ε3

(
φiL(3) + ∆φiL(3)

)
+ . . .

in which φiL(n) is defined to be equal to the standard perturbation theory term φi(1) with

Mk
ij → ŴΛM

k
ij , and φiin → ŴΛφ

i
in. The term ∆φiL(n) represents the influence of short-

wavelength physics on the solutions. This is the effective field theory term which appears
in the solution. If we now substitute this series in the effective equation of motion and
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sort in terms of ε we obtain the set of equation of motion for ∆φiL(n),

Dij∆φ
j
L(1) =0

Dij∆φ
j
L(2) =ŴΛM

i
jkφ

j
S0φ

k
L(1) +

1

2
ŴΛM

i
jkφ

j
S0φ

k
S0

Dij∆φ
j
L(3) =ŴΛM

i
jkφ

j
S0

(
φkL(2) + ∆φkL(2)

)
+ ŴΛM

i
jk

(
φjS0 + φjL(1)

)∫ τ

τin

∂φkS(τ)

∂φlL(τ ′)
φL(1)(τ

′)dτ ′

. . .

with the differentials being evaluated at φL = 0.
Since we have the initial conditions in the expression φiL(1) we can solve ∆φiL(1) with

the trivial solution

∆φiL(1) = 0.

The solutions of the second and third equations of motion are

∆φiL(2) =

∫ τ

τin

Gij(τ, τ
′)

[
ŴΛM

j
klφ

k
S0φ

l
L(1) +

1

2
ŴΛM

i
klφ

k
S0φ

l
S0

]
,

∆φiL(3) =

∫ τ

τin

Gij(τ, τ
′)

[
ŴΛM

j
klφ

k
S0(φlL(2) + ∆φlL(2))

+ ŴΛM
j
kl(φ

k
S0 + φkL(1))

[∫ τ ′

τin

∂φlS(τ ′)

∂φmL (τ ′′)
[G(τ ′, τ ′′)−1]mn dτ ′′

]
φnL(1)(τ

′)dτ ′′
]
,

where we used the inverse Green function G−1 in the expression of the short-wavelength
effect. This inverse exists since large-scale structure formation is invertible. The term

∂φS
∂φL

,

cannot be determined from first principle. It should either be measured from direct
observations or N -body simulations. Carroll et al. have extended the Feynman rules of
standard perturbation theory, to include the effective corrections. In this thesis we do
this implicitly by performing standard perturbation theory on the effective equations of
motion.



Chapter 17

Perturbation Theory of Eulerian
Large-Scale Structure Formation

In chapter 3 we studied the equations of motion which govern the formation of large-
scale structure. In chapter 16 we studied the general framework of effective field theory.
In this chapter we study standard perturbation theory and effective field theory of large-
scale structure formation in the Eulerian setting. We follow the work of Sean Carroll et
al. [17] and Carrasco et al. [16].

17.1 Eulerian equations of motion

In the Eulerian setting the evolution is governed by the conservation of mass, Euler and
Poisson equations. In comoving coordinates they can be expressed as

0 =∂τδ + ∂j((1 + δ)vj),

0 =∂τv
i +Hvi + ∂iΨ + vi∂jv

j ,

0 =δij∂i∂jΨ + 4πGa2ρuδ,

with matter perturbation δ = ρ−ρb
ρb

, velocity vi with respect to conformal time τ(t) =∫ t
0

dt′

a(t′) , conformal Hubble parameter H = (∂τa)/a, mean density ρu, scale factor a
and gravitational potential Ψ. Using the convolution theorem, these equations can be
expressed in Fourier space as

∂τ δ̂(k)− ik · v̂(k)−
∫

dk′

(2π)3
iδ̂(k′)k′ · v̂(k− k′) = 0

∂τ v̂
i(k) +Hv̂i(k)−

∫
dk′

(2π)3
[iv̂i(k′) · (k− k′)v̂i(k− k′)] = ikiΨ̂

−4πGρu
δ̂(k)

k2
=

Ψ̂

a2
.
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On large scales the dark matter fluid is assumed to have a gradient velocity field, i.e.
vanishing curl. For this reason we work with the divergence of the velocity field θ = ∂iv

i,
which is a scalar and contains the same information. In Fourier space θ can be written
as θ̂ = −ikiv̂i. The equations of motion for this choice of parameters are

0 = ∂τ δ̂(τ,k) + θ̂(τ,k) +

∫
d3q

(2π)3

k · q
q2

δ̂(τ,k− q)θ̂(τ,q),

0 = ∂τ θ̂(τ,k) +Hθ̂(τ,k) +
3

2
H2δ̂(τ,k) +

∫
d3q

(2π)3

k2q · (k− q)

2q2(k− q)2
θ̂(τ,k− q)θ̂(τ,q),

where we have substituted the Poisson equation to obtain a system of two differential
equations with two unknowns.

17.2 Standard perturbation theory

We can write the system of differential equations in a more condensed form as

0 = Dijφj −
1

2
M i
jkφ

jφk,

with

φ(k) =

(
δ̂(k)

θ̂(k)

)
.

The fact that the differential equation only contains linear and quadratic terms in φ
restrict our Feynman diagrams to three point vertices. The linear terms of the equation
are written in terms of the tensor D given by

Dij =

(
∂τ 1

3
2H

2 ∂τ

)
,

while the quadratic terms are written in terms of the tensor M defined as

M δ
ij(k1; k2, k3) =

(
0 −k1k3

k23

−k1k2
k22

0

)
,

M θ
ij(k1; k2, k3) =

(
0 0

0 − k21
k2k3

)
.

In order to perform standard perturbation theory on this equation, we determine the
retarded Green function G. The Green function satisfies

DijG
j
k(τ ; τin) = δikδ

(1)(τ − τin).
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τin

τ

φi(1)(τ) = Gij

φjin

τin

τ

φi(2)(τ) =

Gij

M j
kl

Gkn Glm

φnin φmin

Figure 17.1: The first and second order approximation in standard perturbation theory

For a Einstein-de Sitter universe, this condition is solved by

Gik(τ1; τ2) =

 3τ51 +2τ52
5τ31 τ

2
2

−τ51 +τ52
5τ31 τ2

−6(τ51−τ52 )

5τ41 τ
2
2

2τ51 +3τ52
5τ41 τ2

Θ(τ1 − τ2).

The propagator G and interaction matrix M allow us to perform standard perturbation
theory. The first order correction is

φi(1)(τ) = Gij(τ, τin)φjin.

This corresponds to a Feynman diagram consisting of a vertical line, see figure ??.
Different Fourier modes evolve independently. The second order correction is of the
form

φi(2)(τ) =

∫ τ

τin

dτ ′Gij(τ, τ
′)M j

kl(τ
′)φk(1)(τ

′)φl(1)(τ
′)

=

∫ τ

τin

dτ ′Gij(τ, τ
′)M j

kl(τ
′)Gkm(τ ′, τin)φminG

l
n(τ ′, τin)φnin.

The interaction matrix M couples different Fourier modes and different components of φ.
This corresponds to a vertex in the corresponding Feynman diagrams, see figure ??. The
integral over time represents different moments at which the coupling can take place.
Higher order corrections will contain more vertices and have more involved couplings
between different Fourier modes of δ and θ.

17.3 Eulerian effective field theory

In the standard perturbation theory we approximated solutions of the standard equation
of motion

0 =Dijφ
j
L −

1

2
M i
jkφ

j
Lφ

k
L.
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In an effective theory we integrate over small scale physics. This results in additional
terms in the equations of motion. Formally up to linear order, the effective equation of
motion is

0 =Dijφ
j
L −

1

2
ŴΛM

i
jkφ

j
Lφ

k
L − ŴΛM

i
jk

[
φjS0φ

k
L +

1

2
φjS0φ

k
S0

+ φjS0

∫ τ

τin

∂φkS(τ)

∂φlL(τ ′)
φlL(τ ′)dτ ′ + φjL

∫
τin

∂φkS(τ)

∂φlL(τ ′)
φlL(τ ′)dτ ′

]
,

with the first two terms being the original equation of motion for long wavelength modes
with long wavelength interactions. The remaining terms are the effective contributions.
The effective contributions should be measured from observations orN -body simulations,
since we do not know the behavior of

∂φkS(τ)

∂φlL(τ ′)
.

It is a function of the times τ and τ ′ and expresses the influence of the small scale physics
on the large scale fluctuations. One fundamental difference between effective field theory
in large-scale structure formation and quantum field theory can be seen from this func-
tional differential. It can in principle contain information of the past, i.e. the derivative
can be large for τ ′ � τ . The evolution of the small scale physics in a cluster can depend
nature of the inflow of matter in at an earlier time. The derivative can furthermore dif-
fer in different environments. This phenomenon does not occur in quantum field theory
since all fundamental particles of the same species are identical and do not contain some
form of hysteresis. Although promising and insightful, we do not yet know much about
this differential. More research is needed to extend the use of this formalism.

There however exist different approaches to effective field theory of large-scale struc-
ture formation. Baumann et al. [9] and Carrasco et al. [16] performed analyses on
the Boltzmann equation and derived similar corrections. They showed that the correc-
tions can be interpreted as an imperfect fluid. Mercolli and Pajer [49] used Newtonian
symmetries to derive effective corrections. Their corrections include the perfect fluid
corrections of Baumann and Carrasco but are a bit more general. See appendix B for a
sketch of the derivation. Carroll et al. [17] connected the effective corrections described
above to the corrections of Mercolli and Pajer with the identification

−ŴΛM
i
jk

[
φjS0φ

k
L +

1

2
φjS0φ

k
S0 + φjS0

∫ τ

τin

∂φkS(τ)

∂φlL(τ ′)
φlL(τ ′)dτ ′ + φjL

∫
τin

∂φkS(τ)

∂φlL(τ ′)
φlL(τ ′)dτ ′

]
=Cil (τ, k)φl(k),

with

Cil (τ, k) =

(
χδ χθ

k2c2
s −k2 c

2
v
H

)
.
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The parameters χδ, χθ, cs and cv are analogous to the heat conduction coefficients, vis-
cosity and speed of sound of an imperfect fluid but can depend on time. In terms of
these functions, the effective equations of motion are

0 = Dijφ
j
L −

1

2
ŴΛM

i
jkφ

j
Lφ

k
L + Cij(τ, k)φjL(k)

= [Dij + Cij(τ, k)]φjL −
1

2
ŴΛM

i
jkφ

j
Lφ

k
L.

Hence in effective perturbation theory, up to linear order, we only modify the Green
function.
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Chapter 18

Perturbation Theory of Lagrangian
Large-Scale Structure Formation

In chapter 3 we studied the equations of motion which govern the formation of large-scale
structure. In chapter 16 we studied the general framework of effective field theory. In
chapter 17 we applied standard perturbation theory to the Eulerian fluid equations. In
this chapter we study standard and effective perturbation theory of large-scale structure
formation in the Lagrangian setting. For the Lagrangian approach we follow Porto et
al. [56]. We start with standard perturbation theory and then apply effective field
corrections.

18.1 Lagrangian standard perturbation theory in single-flow regions

In 1970, Zel’dovich [72] derived a linear Lagrangian approximation of large-scale struc-
ture formation. Bouchet et al. in 1992 [12] and Buchert and Ehlers in 1993 [15] extended
Zel’dovich’s approach to second order and obtained what is now known as the 2LPT
model (Second order Lagrangian Perturbation Theory). In 1994 and 1995, Buchert [14],
Bouchet et al. [11] and Catelan [19] studied the third order approximation, known as
3LPT. The fourth order approximation, known as 4LPT, was investigated by Venselow
[68], Shiraishi [62] and Sasaki and Kasai [61]. These approaches were mainly aimed at
gradient displacement fields. Tatekawa [65] performed in 2013 a complete analysis of
Lagrangian perturbations theory with a general displacement fields up to fourth order.

In this chapter we follow the notation of Tatekawa and cast the Lagrangian pertur-
bation theory in the Feynman diagram notation described in the previous chapter. The

191
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Eulerian large-scale structure formation equations can be written as

∂δ

∂t
+

1

a
∇x · [v(1 + δ)] = 0,

∂v

∂t
+

1

a
(v · ∇x)v +

ȧ

a
v =

1

a
g,

∇x × g = 0,

∇x · g = −4πGρbaδ,

δ =
ρ− ρb
ρb

.

In the Lagrangian framework we consider the evolution of infinitesimal fluid elements,
displaced according to the map

q 7→ x = q + s(q, t)

with q the initial position, x the final position and s the displacement. The conservation
of mass has a natural form in the Lagrangian perspective. Since the fluid elements flow
with the fluid, a fluid element always contains the same mass. Mathematically, the
volume of a fluid element can be obtained by multiplying with a Jacobian. The density
goes as one over the Jacobian. As a consequence, we can write the conservation of mass
as

δ = 1− J−1

with for regions without shell crossing

J = det

(
I +

∂si
∂qj

)
.

Note that in multi-flow regions, we have to apply this formula to all flows and add over
the densities of the flows. In this section we will only consider single-flow regions. This
is one of the major restrictions of the perturbation theory derived in this section. In
the rest of this chapter we will abbreviate partial derivatives with respect to Lagrangian
coordinates by commas, i.e., ∂si/∂qj = si,j . The Euler and Poisson equations can be
combined and form the central equations of this section

∇x ·
(

s̈ + 2
ȧ

a
ṡ

)
= −4πGρb(J

−1 − 1),

∇x ×
(

s̈ + 2
ȧ

a
ṡ

)
= 0.

In general the displacement field s can be decomposed in a longitudinal and transversal
part

s = sL + sT ,
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with

∇ · sT = 0 and sL = ∇S,

for some scalar field S. In this section we consider a gradient displacement field, i.e.,
sT = 0. Under this assumption we only have the divergence differential equation and
can write the evolution equation as

∂

∂xi

(
S̈i + 2

ȧ

a
Ṡi

)
= −4πGρb(J

−1 − 1).

The calculations presented here can however trivially be extended to include transversal
component of s, and the curl equation. In the divergence equation we still have a partial
derivative in Eulerian x-directions. This derivative can be traced back to the Poisson
equation, which contains a Laplacian with respect to the Eulerian position. Fortunately
we can use the definition of the displacement field to express partial derivatives with
respect to Eulerian positions in terms of partial derivatives with respect to Lagrangian
positions via the expansion

∂

∂xi
=

∂

∂qi
− sj,i

∂

∂xj

=
∂

∂qi
− sj,i

∂

∂qj
+ sj,isk,j

∂

∂xk

=
∂

∂qi
− sj,i

∂

∂qj
+ sj,isk,j

∂

∂qk
− . . .

This transformation can be written more formally as

∂

∂xi
= (M−1)ij

∂

∂qj
,

with the matrix M given by the components

Mij = δij + S,ij ,

with δ the Kronecker delta. In the sections below, we analyze the perturbation theory
up to second order, assuming a gradient displacement field, in one-, two-, and three-
dimensional models of the universe.

18.1.1 One-dimensional universe

In one dimension the Lagrangian evolution equation states

(1− S,11 + S2
,11 − S3

,11 + . . . )

(
S̈,11 + 2

ȧ

a
Ṡ,11

)
= −4πGρb(J

−1 − 1),
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with J = 1 + S,11. Using the Taylor series around x = 0,

1

1 + x
= 1− x+ x2 − x3 + . . . ,

the equation simplifies to

S̈,11 + 2
ȧ

a
Ṡ,11 = 4πGρbS,11.

Note that this simplification follows directly from the alternative transformation from
Eulerian to Lagrangian partial derivatives. This differential equation is a harmonic
oscillator and allows solutions of the form

S(q, t) =

[
C1e

−it
(
ȧ/a+
√

4πGρb+(ȧ/a)2
)

+ C2e
−it
(
ȧ/a−
√

4πGρb+(ȧ/a)2
)]
ψ(q),

with the constants C1, C2 and the function ψ. Both C1, C2, and ψ can be obtained from
the initial conditions. In general one of the exponentials will decay, while the other grows
in time. If we ignore the decaying mode and write the growing mode as D+(t), we get
the Zel’dovich approximation

S(q, t) = D+(t)ψ(q) and si(q, t) = D+(t)ψ,i(q).

Hence we have proved that the Zel’dovich approximation is exact (neglecting the de-
caying mode) up to shell crossing. After shell-crossing the approximation of J is no
longer valid, since we have to sum over the flows. The Lagrangian perturbation theory
in one dimension, contains only a first order term. In higher dimensions, the increasing
complexity of J introduces higher order corrections.

For completeness we write the second order equation as two first order equations in
Lagrangian Fourier space

0 =
˙̂
S − T̂ ,

0 =
˙̂
T + 2

ȧ

a
T̂ − 4πGρbŜ,

with T = Ṡ. These equations can be written in Feynman notation

Di
jφ
j = 0

with

φ =

(
Ŝ

T̂

)
and

D =

(
d
dt −1

−4πGρb 2 ȧa + d
dt

)
.

In the Feynman diagram notation, the Lagrangian standard perturbation theory in one
dimension is a lines (see figure 13.3b), representing the Zel’dovich approximation.
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18.1.2 Two-dimensional universe

In two dimensions we can perform a similar calculation. This time the density is given
in terms of the Jacobian

J = 1 + S,ii + det(S,ij) = 1 + S,ii + εijS,1iS2j ,

with εij the two dimensional Levi-Civita symbol1. The complete evolution equation
reads

0 =

(
∂

∂qi
− S,ji

∂

∂qj
+ S,jiS,kj

∂

∂qk
− . . .

)(
S̈,i + 2

ȧ

a
Ṡ,i

)
+ 4πGρb

(
1

1 + S,ii + εijS,1iS2j
− 1

)
.

After expanding the last term with the Taylor series

1

1 + x
= 1− x+ x2 − x3 + . . . ,

we get a differential equation containing infinitely many terms. It is remarkable to note
how the complexity increases while going form one to two dimensions. We can however
perform standard perturbation theory on the equation. In order to do this, we write the
differential equation in the form

Dijφj =
1

2!
M i
jkφ

jφk +
1

3!
N i
jklφ

jφkφl + . . . ,

with

φ =

(
Ŝ

T̂

)
,

with Ŝ the Fourier transform of S and T̂ =
˙̂
S, and D,M,N, . . . , some tensors containing

the information of the differential equation. In order to determine these tensors, we first
sort the differential equation in linear, quadratic and higher orders in S

f (1) =S̈,ii + 2
ȧ

a
Ṡ,ii − 4πGρbS,ii

f (2) =− S,ijS̈,ij − 2
ȧ

a
S,jiṠ,ij + 4πGρb[(S,ii)

2 − εijS,1iS,2j ]

f (3) =S,ijS,kjS̈,ik + 2
ȧ

a
S,ijS,kjṠ,ik + 4πGρb[2(S,ii)(εijS,1iS,2j)− (S,ii)

3]

f (4) =− S,ijS,kjS,lkS̈,il − 2
ȧ

a
S,ikS,kjS,lkṠ,il + 4πGρb[(εijS,1iS,2j)

2 − 3(S,ii)
2(εijS,1iS,2j)]

f (5) = . . .

1The Levi-Civita symbol εi1,...,id is 1 if (i1, . . . , id) is en even permutation, −1 if it is an odd permu-
tation of (i, 1, 2, . . . , d), and 0 if it is no permutation of (1, . . . , d).
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We subsequently substitute SSPT for S in the differential equation, defined as

SSPT = εS(1) + ε2S(2) + ε3S(3) + . . . ,

with constant ε and scalar fields S(i). We moved the index to superscript, since par-
tial derivatives are written in subscript notation. The differential equation in linear,
quadratic and cubic order in ε are given by

ε1 : 0 = f (1)(S(1)),

ε2 : 0 = f (1)(S(2)) + f (2)(S(1), S(1)),

ε3 : 0 = f (1)(S(3)) + f (2)(S(1), S(2)) + f (2)(S(2), S(1)) + f (3)(S(1), S(1), S(1)),

ε4 : 0 = . . .

where the jth argument of f (i) refer to the jth factor S in the products from the left, in
the definition of f (i). Since our use of f (i) is symmetric, the order in the definition is
irrelevant. In terms of S, we have the linear and quadratic term in ε

ε1 : 0 = S̈
(1)
,ii + 2

ȧ

a
Ṡ

(1)
,ii − 4πGρbS

(1)
,ii

ε2 : 0 = S̈
(2)
,ii + 2

ȧ

a
Ṡ

(2)
,ii − 4πGρbS

(2)
,ii + 4πGρb

(
(S

(1)
,11)2 + S

(1)
,11S

(1)
,22 + (S

(1)
,12)2 + (S

(1)
,22)2

)
ε3 : 0 = . . .

In Fourier space, with respect to the Lagrangian coordinates, these equations can be
written as

ε1 : 0 =
¨̂
S(1)(k) + 2

ȧ

a
˙̂
S(1)(k)− 4πGρbŜ

(1)(k)

ε2 : 0 =
¨̂
S(2)(k) + 2

ȧ

a
˙̂
S(2)(k)− 4πGρbŜ

(2)(k)

− 4πGρb
k2

∫ (
k′1k
′
2(k′1 − k1)(k′2 − k2) + (k′1)2(k1 − k′1)2

+ (k′1)2(k2 − k′2)2 + (k′2)2(k2 − k′2)2
)
Ŝ(1)(k′)Ŝ(1)(k′ − k)dk′

ε3 : 0 = . . .

The first equation, consisting of the linear terms in ε, which can be written as

Dijφ(1)j = 0

by which

D =

(
d
dt −1

−4πGρb 2 ȧa + d
dt

)
.
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The D derived here coincides with the D derived in one-dimensional Lagrangian standard
perturbation theory, and gives the Zel’dovich approximation in two dimensions. The
second equation, proportional to ε2, is in compact notation given by

Dijφ(2)j =
1

2!
M i
jkφ

(1)jφ(1)k

by which the matrix M is zero for all elements other then the element M2
11 which is

given by

M2
11 =− 8πGρb

k2

(
k′1k
′
2(k′1 − k1)(k′2 − k2) + (k′1)2(k1 − k′1)2 + (k′1)2(k2 − k′2)2

+ (k′2)2(k2 − k′2)2
)
.

The third equation, proportional to ε3, can be written in compact notation as

Dijφ(3)j = M i
jkφ

(1)jφ(2)k +
1

3!
N i
jklφ

(1)jφ(1)kφ(1)l

which gives N . The higher order tensors follow from similar calculations.
Using this method, we can write nLPT theory in Feynman notation. The Zel’dovich

approximation, consists out of a line (see figure 13.3b). The 2LPT and 3LPT theory can
be expressed as figure 13.3b and figure 13.3b.

18.1.3 Three dimensional universe

The calculation in three spatial dimensions is very similar to the two-dimensional calcu-
lation. The only difference is in the Jacobian, which in three dimensions reads

J = 1 + S,ii +
1

2

[
(S,ii)

2 − S,ijS,ji
]

+ det(S,ij)

=1 + S,ii +
1

2

[
(S,ii)

2 − S,ijS,ji
]

+ εijkS,1iS,2jS,3k.

After writing the term 1/J as a series in S,ii + 1
2

[
(S,ii)

2 − S,ijS,ji
]

+ εijkS,1iS,2jS,3k, we
obtain a differential equation containing infinity many terms. We can sort the differential
equations in homogeneous terms

f (1) =S̈,ii + 2
ȧ

a
Ṡ,ii − 4πGρbS,ii

f (2) =− S,jiS̈,ij − 2
ȧ

a
Ṡ,ij − 4πGρb((S,ii)

2 − S,ijS,ji)− (S,ii)
2)

f (3) =S,jiS,kjS̈,ik + 2
ȧ

a
S,jiS,kjṠ,ik − 4πGρb(εijkS,1iS,2jS3k + (S,ii)

3

− 1

2
(S,ii)[(S,ii)

2 − S,ijS,ji])

f (4) = . . .
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After substitution of

SSPT = εS(1) + ε2S(2) + ε3S(3) + . . . ,

the differential equation can be sorted in equation linear, quadratic, cubic and higher
order in ε,

ε1 : 0 = S̈
(1)
,ii + 2

ȧ

a
Ṡ

(1)
,ii − 4πGρbS

(1)
,ii

ε2 : 0 = S̈
(2)
,ii + 2

ȧ

a
Ṡ

(2)
,ii − 4πGρbS

(2)
,ii + 2πGρb

(
S

(1)
,ii S

(1)
,jj − S

(1)
,ij S

(1)
,ij

)
ε3 : 0 = . . .

In Fourier space with respect to the Lagrangian coordinates, these equations can be
written as

ε1 : 0 =
¨̂
S(1)(k) + 2

ȧ

a
˙̂
S(1)(k)− 4πGρbŜ

(1)(k)

ε2 : 0 =
¨̂
S(2)(k) + 2

ȧ

a
˙̂
S(2)(k)− 4πGρbŜ

(2)(k)

+
2πGρb
k2

∫
[(k′ik

′
i)(kj − k′j)(kj − k′j)− k′ik′j(ki − k′i)(kj − k′j)]

Ŝ(1)(k′)Ŝ(1)(k′ − k)dk′

ε3 : 0 = . . .

In terms of the φ-notation, this gives

D =

(
d
dt −1

−4πGρb 2 ȧa + d
dt

)
.

This again gives the Zel’dovich approximation. The matrix M is zero for all elements
other then the element M2

11 which is given by

M2
11 =

2πGρb
k2

[(k′ik
′
i)(kj − k′j)(kj − k′j)− k′ik′j(ki − k′i)(kj − k′j)].

18.2 Transversal displacement term in standard perturbation theory

When we include the transversal component of the displacement field sT we have to add
the curl differential equation

∇x ×
(

s̈ + 2
ȧ

a
ṡ

)
= 0,

to the analysis. We furthermore must include the transversal component in the Jacobian
J . In one dimension, the displacement field cannot be decomposed in a longitudinal and
a transversal component. In two dimensions we get

J = 1 + S,ii + sTi,j + det(S,ij + sTi,j).
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In three dimensions the Jacobian becomes

J =1 + S,ii +
1

2

[
(S,ii)

2 − S,ijS,ji − sTi,jsTj,i − 2S,ijs
T
j,i

]
+ det

(
S,ij + sTi,j

)
=1 + S,ii +

1

2

[
(S,ii)

2 − S,ijS,ji − sTi,jsTj,i − 2S,ijs
T
j,i

]
+ εijk

(
S,1i + sT1,i

) (
S,2j + sT2,j

) (
S,3k + sT3,k

)
We however do not make this extension in this thesis, since it greatly enlarges the expres-
sions while rotation in large-scale structure formation only occurs after shell crossing.

18.3 Lagrangian standard perturbation theory with multi-flow regions

In the previous section, we derived a Lagrangian perturbation theory which follows the
derivation of the Zel’dovich approximation and the 2LPT, 3LPT and 4LPT models. One
of the major drawbacks of this approach is the density is only accurately approximated
in single flow regions. There exist more sophisticated Lagrangian perturbation theories,
which do not suffer from this problem. We here sketch the Lagrangian perturbation
theory used by Rafael Porto et al. in 2013 [56] in deriving the first effective Lagrangian
perturbation theory.

The differential equations of large scale structure formation can be written as

∂2x(q)

∂τ2
+H∂x(q)

∂τ
=−∇xΦ(q),

∇2
xΦ =

3

2
ΩmH2δ(q).

The density can be approximated as

δ(x, τ) =

∫
dqδ(d)(x− x(q, τ)).

Note that x is a spatial coordinate, while x(q, τ) is the position a Lagrangian volume
element , initially at q, after time τ . This is the integral form of the Jacobian used in
the previous section. The equations can be written in Fourier space, with respect to
Eulerian coordinates. The Fourier transform of the density perturbations is

δ̂(k, τ) =

∫
dqe−ik·x(q,τ),

by which the Poisson equation can be written as

Φ̂(k, τ) =− 3

2
H2Ωm

1

k2

∫
dqe−ik·x(q,τ).

By substituting this expression for the gravitational potential in the equations of motion,
we obtain an explicit and exact form of the Lagrangian fluid equations

x′′(q, τ) +Hx′(q, τ) =
3

2
H2Ωm

∫
dq′

∫
ik

k2
eik·(x(q,τ)−x(q′,τ)) dk

(2π)d
.
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Matsubara [46] performed standard perturbation theory on this differential equation.
Rafael Porto et al. in 2013 [56] extended it to include effective corrections to the equa-
tions of motion. The great advantage of this approach is that it works for both single
and multi stream regions. In this thesis we however restrict our self to Lagrangian fluid
dynamical approximation in which the displacement field is a gradient field.

18.4 Lagrangian effective field theory

In the previous chapter we considered effective field theory in the Eulerian setting. The
effective equations of motion can be written as

∂δ

∂t
+

1

a
∇x · [v(1 + δ)] + χδδ + χθ∂iv

i = 0,

∂v

∂t
+

1

a
(v · ∇x)v +

ȧ

a
v− c2

s∇δ +
c2
va

ȧ
∇2v =

1

a
g,

∇x × g = 0,

∇x · g = −4πGρbaδ,

δ =
ρ− ρb
ρb

,

with χδ, χθ, c2
s, and c2

v functions of time which should be empirically measured.
In the standard perturbation theory setting, we replaced the conservation of mass by

the deformation of Lagrangian volume elements. We can now longer do this when χδ and
χθ are nonzero. I however suspect that χδ and χθ will be small, since the conservation
of mass is a very intuitive constraint on a dark matter fluid. The viscosities cs, and cv
represent a stickiness of large scales, due to small scale physics. We could for example
imagine that the generation of caustics and formation of stars in a galaxy will slow down
large scale fluctuations.

An interesting case appears when we only take the viscosity cv into account. In this
model particles follow the Zel’dovich approximation up to shell crossing. After shell
crossing they however turn around and virialize in filaments and clusters. In the limit
cv → 0, we obtain the well known adhesion model. We studied the adhesion model in
detail in chapter 3. It can be seen as one of the earliest effective models of Lagrangian
large-scale structure formation.



Chapter 19

Statistics of Caustics in General
Lagrangian Approaches

In chapters 12 and 13 of this thesis we analyzed the statistics of caustics appearing in
the Zel’dovich approximation. In chapter 4 we observed that caustics exist in a more
general setting. They are generated in any Lagrangian approach to structure formation,
during shell crossing. In this chapter we extend the conditions for caustics in Lagrangian
approaches presented in chapter 6. We furthermore show how these conditions can be
used to calculate the statistics of caustics in standard and effective perturbation theory.
We do not perform the calculations explicitly but do show how they can be executed.

19.1 Caustics conditions in Lagrangian approaches

In chapter 6 we observed that the Zel’dovich approximation predicts infinite densities
when

D+(t) =
1

λi
,

with λi on of the eigenvalues of the deformation tensor. Using the fact that the defor-
mation tensor is constant in the Zel’dovich approximation, we constructed an embryonic
skeleton in Lagrangian space. We furthermore classified components of the skeleton us-
ing Lagrangian catastrophe theory. Specific conditions on the Lagrangian fluctuations
could be specific features of the skeleton. We here generalize these conditions of generic
Lagrangian approaches.

19.1.1 Caustics in one dimension

In one dimension, caustics in the Zel’dovich approximation can be classified as being
fold and cusp catastrophes. The folds correspond to level crossings whereas the cusps
correspond to maxima and minima of the initial density perturbation. In this thesis
we often used the symbol λ1 for the density perturbation, since the caustics conditions

201
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are in principal conditions on the eigenvalue fields of the deformation tensor (T11). In
the one dimensional Zel’dovich approximation, there is only one eigenvalue field, which
turns out to coincide with the density perturbation. The caustics conditions are

fold : λ1 = λ and λ11 6= 0,

cusp : λ1 = λ and λ11 = 0,

with λ = 1/D+(t) the eigenvalue corresponding with shell crossing. In the Zel’dovich
approximation, the deformation tensor is constant. In Lagrangian approaches beyond
the Zel’dovich approximation, the deformation can change in time. In approaches with
a gradient displacement field, the conditions however remain valid1. In this chapter we
aways assume the displacement field to be a gradient field. Hence the folds and cusps
occurring at time t are fully determined same eigenvalue conditions in the eigenvalues
of the deformation tensor (T11)(t) at that instant.

19.1.2 Caustics in two dimensions

In two dimensions, the conditions of point catastrophes change as in the one-dimensional
case. The cusp, swallowtail, and umbilic catastrophes appearing at time t correspond to
the same conditions on the eigenvalues of the deformation tensor (Tij)(t) at that instant
in time. The A2-lines consist of the points which experience shell crossing at some fixed
moment in time. Since the A2-lines statistic do not explicitly depend on time, the A2-
lines correspond to the isocontours of the eigenvalue fields of (Tij)(t).

The A3-line conditions in generic Lagrangian models are a bit more involved, since
the A3-lines consist of the points which collapsed to cusp catastrophes at some time t.
Hence formally the points on the A3-lines corresponding to the first eigenvalue satisfy
the conditions

λ1(t) =
1

D+(t)
and λ11(t) = 0,

for some time t, with λi(t) the eigenvalue of the time evolved deformation tensor. The
A3-lines corresponding to the second eigenvalue field follows analogously.

19.2 Statistics of caustics in standard and effective perturbation theory

For the Zel’dovich approximation we expressed the statistics of caustics in terms of
two point correlation functions of the initial density field and its derivatives. Since the
geometric statistics developed in chapter 10, can be applied to any stationary random
field, we can use the correlation functions of the evolved deformation tensor to calculate
the statistics of caustics.

The statistics of point catastrophes correspond to correlation functions of products

1When the displacement field contains a transversal component more extended conditions are needed
as we saw in chapter 6.
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of eigenvalues and derivatives of eigenvalues of eigenvalues. We can subsequently rotate
to the Hessian frame and substitute the expressions of the eigenvalues in terms of the
deformation tensor. We now have the expectation value of a product of components of
the deformation tensor and its derivatives. In standard and effective perturbation theory
we can approximate these expectation expectation values by expanding the expectation
value in terms of different corrections. Each correction in the resulting expectation
corresponds to a Feynman diagram described in chapter 15.

The line statistics are bit more involved, since they consist out of the expectation
value of the square root of a sum of squares of the eigenvalue field and their derivatives.
We can tackle this problem by expanding the square root around the expectation of the
argument. We here illustrate this expansion

〈f(x)〉 = f(〈x〉) +
1

2!

〈
(x− 〈x〉)TH(x− 〈x〉)

〉
+ . . . ,

with H the Hessian of f being evaluated at 〈x〉. For our case consider the function
f(x, y) =

√
x2 + y2 with 〈x〉 = a and 〈y〉 = b. The Hessian is of f is

H =
1

(a2 + b2)3/2

(
b2 −ab
−ab a2

)
by which

〈
√
x2 + y2〉 =

√
〈x〉2 + 〈y〉2

+
1

(a2 + b2)3/2

[
b2〈(x− a)2〉 − 2ab〈(x− a)(y − b)〉+ a2〈(y − b)2〉

]
+ . . .

The dots indicate higher order corrections. We have not calculated the statistics of
caustics in standard perturbation theory explicitly. This remains to be done in further
research.
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Chapter 20

Conclusion

It is generally thought that the universe originated at the Big Bang. In the 10−36 to
10−32 seconds after its start, the universe experienced a great expansion. This period
is know as the inflationary epoch. Inflation both flattened the curvature of space and
homogenized the temperature in the universe. At the same time it generated tiny den-
sity fluctuations, which we can now observe as temperature anisotropies in the cosmic
microwave background. Statistical analyses have shown these fluctuations to be well
modeled by Gaussian random fields. It is thought that all structure in the universe
originates from these density fluctuations.

At the time the universe became neutral, the matter particles in it were approxi-
mately uniformly distributed and at rest. As time evolved, they started moving. Over-
dense regions accumulated matter from their underdense surroundings. This process
continued till the overdense regions became dense enough to form stars and galaxies.
The resulting distribution of galaxies is no longer a uniform one. The gravitational col-
lapse of the initial density fluctuations has resulted in an intricate structure, composed
out of clusters, filaments, voids and walls. This has been observed in many high redshift
galaxy surveys and is today known as the large-scale structure or the cosmic web.

In this process regions of infinite density, called caustics, emerged. These caustics
can most easily be thought of if we model the matter in the universe as a fluid. The
initial distribution of particles was uniform. This can be modeled as a homogeneous
fluid. As time evolved, the fluid started to flow, towards overdense regions and away
from underdense regions. At some moment in time different elements of the fluid started
to cross and formed the first structures. This process is called shell crossing and during
this process infinite densities or caustics emerged.

Caustics play a prominent role in large-scale structure formation. They are generated
during gravitational collapse and stars can only form in dense regions. For this reason,
stars can be seen as tracers of the underlying large-scale structure. A better understand-
ing of the caustics in the universe may help us unravel the details of the cosmic web.

In this thesis we restrict ourself to one- and two-dimensional models of large-scale
structure formation. In one-dimensional models of the universe, the caustics consist
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of points. According to Lagrangian catastrophe theory, we can classify them as fold
and cusp catastrophes. A cusp catastrophe is created at the start of a shell crossing
after which it splits into two fold catastrophes. In this thesis we both numerically and
analytically studied the statistics of these caustics in the framework of the Zel’dovich
approximation. We furthermore extended the analytic study to standard and effective
perturbation theory.

In two-dimensional models of the universe, the caustics consist of lines and points.
According to Lagrangian catastrophe theory, we can classify them as umbilic, swallow-
tail, cusp and fold catastrophes. The fold catastrophes consist of lines, known as A2-lines,
on which for all points at a specific point in time shell crossing occurs. The A2-lines
consist of piecewise smooth curves. The singular points on the A2-lines are the cusp
catastrophes, also known as A3 points. As time evolves the A3 points follow trajectories
through space. These trajectories are known as A3-lines. The A3-lines are on their turn
again piecewise smooth curves. Its singular points are the swallowtail and umbilic catas-
trophes. In this thesis we both numerically and analytically study the statistics of these
caustics in the Zel’dovich approximation. A further comparison of the caustics of the
Zel’dovich approximation with an N -body simulation shows that the A3-lines follow the
filamentary structure of the cosmic web, while the swallowtail and umbilic catastrophes
reside in the clusters.

Caustics play a prominent role in large-scale structure formation. A study in the frame-
work of the Zel’dovich approximation indicates that we can use a caustics skeleton to
follow the evolution of the cosmic web. In particular the length of the filaments in the
cosmic web seems to be a property that may be studied in this fashion. We derived
analytic statistics of the caustics in the Zel’dovich approximation and show how this
approach can be extended to higher order standard perturbation theory and effective
field models of large-scale structure formation. These theoretical derivations can be used
to gain further insight in the properties of the cosmic web.



Chapter 21

Discussion

According to current cosmological models, all structure in the universe originates from
quantum fluctuations rendered to classical density fluctuations by inflation. Quantum
field theory and observational analyses indicate that these classical fluctuations can be
modeled by Gaussian random fields. Since the information of Gaussian random fields is
completely contained in their power spectrum, all statistical structural properties of the
current universe can be expressed as a function of the power spectrum of these initial
density fluctuations. From a physical perspective, moreover there is nothing more to be
determined apart from these statistical properties, since also about the initial conditions
only statistics are known.

Although elegant, expressing the statistics of structural properties in terms of the
power spectrum is difficult due to the nonlinear nature of gravity. We can approximate
the statistics numerically by means of N -body simulations. N -body simulations are
however, expensive and are not free from numerical artifacts. This thesis should be seen
as a first investigation to analytically estimate these properties. By means of caustics
occurring in the Zel’dovich approximation in one and two dimensions, we constructed
a skeleton and derived analytic formulas for the density of point catastrophes and the
average line length in this skeleton. We furthermore in two dimensions compared the
skeleton with an N -body simulation modeling a dark matter fluid, showing a great
agreement of the cosmic web and the skeleton on mildly non-linear scales. The lines of
the skeleton coincide with the filaments and the vertices are positioned in the clusters.
On strongly nonlinear scales, the skeleton however starts to deviate from the structure
observed in N -body simulations. In order to improve the skeleton we adapted the
approach to Lagrangian standard perturbation and effective field theory. Although the
approach seems promising, futher research is necissary to model reality more precisely.
Then results might be compared to observational data and applications can be developed.

21.1 Extensions

The analytical calculations of the statistics of caustics, as described in this thesis, need
to be extended in several ways before they can be applied to observations. We here
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discuss the most prominent extensions that deserve further attention.

Three-dimensional models of structure formation

In this thesis, we restricted ourselves to one- and two-dimensional models of large-scale
structure formation. In observations of large-scale structure we however are dealing with
three spatial dimensions. An extra dimension induces complexity not present in one-
and two-dimensional models. In the language of Lagrangian catastrophe theory, three
spatial dimensions lead to two additional catastrophes, the A5 and D5 catastrophes.
Furthermore, the nature of the catastrophes change. The A2 catastrophes now form sur-
faces, at which shell crossing occurs. As time evolves, they sweep through space. The A3

catastrophes, at a fixed point in time, form lines (not to be confused with the A3-lines)
at which shell crossing starts to take place. In time these lines move through space and
trace surfaces. These surfaces are expected to correspond to the walls appearing in the
cosmic web. Note that there exists only one type of wall in three dimensions. The A4

and D4 catastrophes correspond to points, that move through space as time evolves.
The trajectories of these four-dimensional catastrophes correspond to filaments in the
cosmic web. Potentially we can have three different types of filaments, i.e., the A4, D−4
and D+

4 filaments. Each type corresponds to a different environment. However, remains
an open question which type occurs in which environment. The additional A5 and D5

catastrophes occur on fixed instances of space-time. They occur at the singularities in
the four-dimensional catastrophes and will probably represent the clusters of the cosmic
web.

As explained above, a third spatial dimension adds a new layer of complexity to the
analyzes. There are several ways to move forward in dealing with this additional com-
plexity. I feel that we first should determine the role of caustics in the three-dimensional
Zel’dovich approximation. This can be done by performing a three dimensional N -body
simulation on a Gaussian random field and by then comparing the resulting structure
with the caustics skeleton of the initial fluctuations. This will enable us to determine the
accuracy of the skeleton in three dimensions. On the other hand we have to develop new
catastrophe conditions for the newly added catastrophes. Since these conditions will be
local, this will enable us to trivially extend the two-dimensional analytic analysis to the
three dimensional Zel’dovich approximation.

Beyond the Zel’dovich approximations

In this thesis we derived a standard perturbation theory and effective field theory scheme
for Lagrangian large-scale structure formation. We showed how to approximate corre-
lation functions and derived statistics of caustics in one- and two-dimensions. Due to
time limitations the framework has not yet been applied to calculate the statistics of
caustics in these models. Such calculations when done could easily be adapted to more
sophisticated Lagrangian perturbation schemes.
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Beyond the gradient displacement field

The caustics conditions described in this thesis are based on the assumption that the
displacement field of the dark matter particles is a gradient vector field, i.e., there exists
a potential such that this gradient equals the displacement field. This assumption is
supported by the result that any rotation initially present in the displacement field
is suppressed by the expansion of the universe: the displacement field is rotationless
till shell-crossing. When dark matter flows start to cross, vorticity is created. The
caustics conditions presented here do not work for displacement fields with vorticity. The
framework of Lagrangian catastrophe theory is however general enough to classify the
caustics resulting form such displacement fields. Hence, further research could generalize
the caustics conditions to this situation.

Beyond the skeleton

In this thesis we worked with a caustics skeleton. We used the truncated Zel’dovich
approximation and tried to catch the structure of the cosmic web in terms of a skeleton,
consisting of points of size zero and lines without thickness. In this process we suppressed
small scale caustics. The observed cosmic web is, however, not a skeleton; the clusters
have a finite size and the filaments do have a thickness. Moreover, the filaments and
walls have a complex structure themselves. The cosmic web is a hierarchic, fractal-like
object. The skeleton approach dismisses these details. The analysis proposed here can,
however, be modified to include these statistical properties.

One potential way to probe these details is by gradually removing the suppression
of the small scale caustics. By decreasing the smoothing scale, we include smaller scale
structures which will result in more caustics. This principle can be interpreted as ’dress-
ing the skeleton’; we add a size to the elements of the skeleton. Another fruitful approach
would be to apply the present analysis on constrained Gaussian random fields. In this
way we can specifically target an environment and determine its statistical properties.
Both approaches will enable us to get more insight in the hierarchy of the cosmic web. It
will, however, in practice be difficult to perform these calculations due to the restrictions
of the Zel’dovich approximation. We have yet to see whether Lagrangian standard per-
turbation and effective field theory are able to model the small and large scale structure
simultaneously.

21.2 Applications

If the analysis presented here can successfully be extended as described above, there are
numerous applications. We here mention some interesting applications.

The length of filaments

One of the most promising statistical measures of the caustics skeleton is the aver-
age length of filaments. The curves of the skeleton have a good alignment with two-
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dimensional N -body simulations and their average length is easily computable from the
statistics of the initial conditions. In order to verify the validity of this approach, we
could compare the length distribution in a skeleton with those in N -body simulations.
We expect, however, that the concept of length needs adaptation in order to be an
interesting measure. The skeleton is namely winded in the clusters, and this leads to
overestimation of the distance between clusters. There are of course multiple ways to
correct for this issue. I would propose to weight the line length by its curvature.

Classification of the cosmic web

The cosmic web consists of an extremely complex network, and the scientific community
is still unable to unambiguously classify its structure. The caustics skeleton might help
to in the future construct a more rigorous classification. We saw that the extension
to three-dimensional models results in a skeleton with clusters represented by A5 and
D5 catastrophes, filaments by A4, and D4 catastrophes and walls by A3 catastrophes.
Hence, this classification uniquely defines components of the cosmic web and differenti-
ates between different types of filaments. It remains to be seen which type of filament
will correspond to which environment. Type and environment will however be directly
linked, since the difference between filaments results from the nature of the matter inflow
generating the filament.

A classification like this is definitely feasible in N -body simulations, as the complete
history of particles is known is this case. In observational data this will be more difficult,
since the caustics skeleton relies on the phase-space distribution of particles. However,
since new galaxy surveys are expected to measure the complete phase-space distribution
of galaxies and reconstruction algorithms of large-scale structure are in rapid develop-
ment, we might be able to perform this classification in the future.
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[10] F. Bernardeau, S. Colombi, E. Gaztañaga, and R. Scoccimarro. Large-scale struc-
ture of the Universe and cosmological perturbation theory. physrep, 367:1–248,
September 2002.

[11] F. R. Bouchet, S. Colombi, E. Hivon, and R. Juszkiewicz. Perturbative Lagrangian
approach to gravitational instability. aap, 296:575, April 1995.

[12] F. R. Bouchet, R. Juszkiewicz, S. Colombi, and R. Pellat. Weakly nonlinear gravi-
tational instability for arbitrary Omega. apjl, 394:L5–L8, July 1992.

211



Bibliography 212

[13] T. G. Brainerd, R. J. Scherrer, and J. V. Villumsen. Linear Evolution of the Gravita-
tional Potential: A New Approximation for the Nonlinear Evolution of Large-Scale
Structure. apj, 418:570, December 1993.

[14] T. Buchert. Lagrangian Theory of Gravitational Instability of Friedman-Lemaitre
Cosmologies - a Generic Third-Order Model for Nonlinear Clustering. mnras,
267:811, April 1994.

[15] T. Buchert and J. Ehlers. Lagrangian theory of gravitational instability of Friedman-
Lemaitre cosmologies – second-order approach: an improved model for non-linear
clustering. mnras, 264:375–387, September 1993.

[16] J. J. M. Carrasco, M. P. Hertzberg, and L. Senatore. The effective field theory of
cosmological large scale structures. Journal of High Energy Physics, 9:82, September
2012.

[17] S. M. Carroll, S. Leichenauer, and J. Pollack. A Consistent Effective Theory of
Long-Wavelength Cosmological Perturbations. ArXiv e-prints, October 2013.

[18] Domenico P. L. Castrigiano and Sandra A. Hayes. Catastrophe theory. With a
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[41] G. Lemâıtre. Un Univers homogène de masse constante et de rayon croissant rendant
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Appendix A

N -Body simulation

For the analysis of shell crossing in N -body simulations, we constructed a simple one-
and two-dimensional N -body simulation. The simulation is discussed in chapter 4. On
the subsequent pages you will find an implementation in Mathematica. The programs
have been written in collaboration with Johan Hidding.
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N - Body 1D
In[18]:= PP@list_D :=

Show@ListLinePlot@list, AspectRatio → 1, PlotRange → 880, L<, 8−3000, 3000<<,
PlotStyle → Black, ImageSize → 300D, ListPlot@list, PlotStyle → RedDD

ZP@list_D := Show@ListPlot@list, AspectRatio → 1, PlotRange → 880, L<, 80, L<<,
PlotStyle → RedD, ListLinePlot@list, AspectRatio → 1,

PlotRange → 880, L<, 80, L<<, PlotStyle → BlackDD

�@f_D := Chop@Fourier@f, FourierParameters → 81, −1<DD
� @f_D := Chop@InverseFourier@f, FourierParameters → 81, −1<DD
fftIndgen@n_, L_D :=

2 π

L
Flatten@8Range@0., n ê 2.D, −Reverse@Range@1., n ê 2. − 1DD<D

Initial Conditions

In[23]:= GRF@size_, pk_, L_, σ_D := ModuleB8noise, amplitude, Pk1, smooth, data<,
With@8pkt = pk<,
Pk1 = Compile@88kx, _Real<<, If@kx � 0, 0, Sqrt@Abs@pkt@kxDDDDDD;

noise = Fourier@RandomVariate@NormalDistribution@D, 8size<DD;
amplitude = Map@Pk1, fftIndgen@size, LD, 1D;
smooth = MapAã−HσL2 ð2ë2 &, fftIndgen@size, LD, 1E;
data = InverseFourier@smooth ∗ noise ∗ amplitudeD;

1

StandardDeviation@Flatten@dataDD
dataF

Cosmology

In[24]:= Cosmology@H0_, Ωm_, ΩΛ_, a_D := H0 a ΩΛ + Ωm a−3 + H1 − Ωm − ΩΛL a−2

H0 = 70.0; Ωm = 1; ΩΛ = 0;

Mass deposition

In[26]:= CIC@Data_D := ModuleB8BinL<,

BinL = ModBBinListsBMod@Data, LD
f2m n

L
, 80, f2m n<F, 1F;

Map@w1, BinLD + Map@w2, RotateRight@ BinL, 81, 0<DDF
w1 = Compile@88list, _Real, 1<<, If@Length@listD � 0, 0, Total@H1 − listLDDD;
w2 = Compile@88list, _Real, 1<<, If@Length@listD � 0, 0, Total@listDDD;



Integrator
In[29]:= LeapFrog@ai_, af_, da_D := Module@8X, P<,

8X, P< = Zeldovich@ai, ai + da ê 2, ΦD;
Do@
X += Drift@a, da, PD;
P −= Re@Kick@a + da ê 2, da, XDD;
, 8a, ai, af, da<D;

8X, P<
D

Interp1D@Field_, x_D := Module@8X1, X2, xm, xn, rx, f1, f2, n<,
X1 = Floor@xD;
X2 = Ceiling@xD;
xm = Mod@x, 1.0D;
xn = 1.0 − xm;

n = Length@FieldD;

f1 = Table@FieldPMod@X1PiT, nD + 1T, 8i, 1, Length@xD<D;
f2 = Table@FieldPMod@X2PiT, nD + 1T, 8i, 1, Length@xD<D;

f1 ∗ xn + f2 ∗ xm

D

Grad2@F_D :=
1

12
RotateRight@F, 2D −

2

3
RotateRight@F, 1D +

2

3
RotateLeft@F, 1D −

1

12
RotateLeft@F, 2D

2     NBody1DNet.nb



Gravity

In[32]:= Drift@a_, da_, P_D :=
da

a2 Cosmology@H0, Ωm, ΩΛ, aD
P

Kick@a_, da_, X_D := ModuleB8δ, invm, Φ, acc<,
δ = CIC@XD ∗ m − 1.0;

invm = MapBIfBð � 0, 0, −
1

ð2
F &, fftIndgen@f2m n, LD, 1F;

Φ = 3 ê 2 Ωm H02 ��@invm ∗ �@δDD ê a;

acc = Interp1DB
f2m n

L
Grad2@ΦD, ModBX

f2m n

L
, f2m nFF;

da

Cosmology@H0, Ωm, ΩΛ, aD
acc

F

Zeldovich@apos_, avel_, Φ_D := ModuleB8u, X, P<,

u = −
n

L
Grad2@ΦD;

X = FlattenBMapIndexedB
L

n
ð2 + apos ð1 &, uFF;

P = avel u;

m = f2m;

8X, P<
F

Run

In[45]:= n = 28; L = 26; σ = 1; ai = 0.02; af = 1.02; ni = 50; da =
af − ai

ni
;

δ = 20 Chop@GRF@n, ð^H−1 ê 2L &, L, σDD;

invm = MapBIfBð � 0, 0, −
1

ð2
F &, fftIndgen@n, LDF;

Φ = ��@invm ∗ �@δDD;

In[40]:= n = 27; L = 26; σ = 1; ai = 0.03; af = 1.02; ni = 50; da =
af − ai

ni
;

δ = 5 TableAã−0.01 Hx−Lê2L2, 8x, L ê n, L, L ê n<E;

invm = MapBIfBð � 0, 0, −
1

ð2
F &, fftIndgen@n, LDF;

Φ = ��@invm ∗ �@δDD;
In[44]:= f2m = 2; 8X, P< = LeapFrog@ai, 1.4, 0.02D;

NBody1DNet.nb    3



N - Body 2D
SetDirectory@"C:\\Users\\J.L.

Fel\\Documents\\Universiteit\\Master\\Master onderzoek H60L"D
C:\Users\J.L. Fel\Documents\Universiteit\Master\Master onderzoek H60L

�@f_D := Chop@Fourier@f, FourierParameters → 81, −1<DD
� @f_D := Chop@InverseFourier@f, FourierParameters → 81, −1<DD
fftIndgen@n_, L_D :=

2 π

L
Flatten@8Range@0., n ê 2.D, −Reverse@Range@1., n ê 2. − 1DD<D

inv = CompileB88kx, _Real<, 8ky, _Real<<, IfBkx � 0 && ky � 0, 0,
−1

kx2 + ky2
FF;

Plotting

Area@88x1_, y1_<, 8x2_, y2_<, 8x3_, y3_<<D :=

AbsB
1

2
Hx1 y2 + x2 y3 + x3 y1 − x2 y1 − x3 y2 − x1 y3LF

trig@list_D := ModuleA8<, 9Opacity@0.5D, ColorData@"LightTemperatureMap"DA
0.5 LogAArea@listD−1EE, ColorFunctionScaling → 80, 0.7<, Polygon@listD=E;

Mozaic@X_D := ModuleB8x, T0, T1, T2, T3, Triang1, Triang2, n<,

n = Length@XD ;

x = Partition@X, nD;
T0 = Flatten@x, 1D;
T1 = RotateLeft@x, 81, 0<D; T1P−1, All, 1TH∗+=L∗L; T1 = Flatten@T1, 1D;
T2 = RotateLeft@x, 80, 1<D; T2PAll, −1, 2T += L − L ê n; T2 = Flatten@T2, 1D;
T3 = RotateLeft@x, 81, 1<D; T3PAll, −1, 2T += L − L ê n; T3 = Flatten@T3, 1D;
Triang1 = Transpose@8T0, T1, T2<, 82, 1<DP ;; −n − 1T;
Triang2 = Transpose@8T3, T2, T1<, 82, 1<DP ;; −n − 1T;
Graphics@Flatten@8Map@trig, Triang1D, Map@trig, Triang2D<D,
AspectRatio → 1, ImageSize → 300DF

MP@data_D := MatrixPlot@data!, DataReversed → 8True, False<D
GridPlot@X_D := Show@H∗ListPlot@X,PlotStyle→Red,AspectRatio→1D,∗L

ListLinePlot@Partition@X, nD, PlotStyle → Black, AspectRatio → 1,

ImageSize → 500D, ListLinePlot@Partition@X, nD!, PlotStyle → BlackDD



Initial Conditions

GRF@size_, Pk_, L_, σ_D :=

ModuleB8noise, amplitude, smooth, Pk2, Sm2, kx, ky, data<,
Pk2 = Compile@88kx, _Real<, 8ky, _Real<<,

If@kx � 0 && ky � 0, 0, Sqrt@Pk@Sqrt@kx^2 + ky^2DDDDD;
Sm2 = CompileA88kx, _Real<, 8ky, _Real<<, ã

−HσL2 Ikx2+ky2Më2E;
noise = Fourier@RandomVariate@NormalDistribution@D, 8size, size<DD;
amplitude =

Map@Pk2 @@ ð &, Outer@List, fftIndgen@size, LD, fftIndgen@size, LDD, 82<D;
smooth = Map@Sm2 @@ ð &, Outer@List, fftIndgen@size, LD,

fftIndgen@size, LDD, 82<D;
data = InverseFourier@smooth ∗ noise ∗ amplitudeD êê Chop;

1

Variance@Flatten@dataDD1ê2
dataF

Cosmology

Cosmology@H0_, Ωm_, ΩΛ_, a_D := H0 a ΩΛ + Ωm a−3 + H1 − Ωm − ΩΛL a−2

H0 = 70.0; Ωm = 1; ΩΛ = 0;

Mass deposition

CIC@Data_D := ModuleB8BinL<,

BinL = ModBBinListsBMod@Data, LD
f2m n

L
, 80, f2m n<, 80, f2m n<F, 1F;

Partition@Map@w1, Flatten@BinL, 1DD +

Map@w2, Flatten@RotateRight@ BinL, 81, 0<D, 1DD +

Map@w3, Flatten@RotateRight@ BinL, 80, 1<D, 1DD +

Map@w4, Flatten@RotateRight@ BinL, 81, 1<D, 1DD, f2m nDF
w1 = Compile@88list, _Real, 2<<,

If@Length@listD � 0, 0, H1 − listPAll, 1TL.H1 − listPAll, 2TLDD;
w2 = Compile@88list, _Real, 2<<, If@Length@listD � 0,

0, listPAll, 1T.H1 − listPAll, 2TLDD;
w3 = Compile@88list, _Real, 2<<, If@Length@listD � 0,

0, H1 − listPAll, 1TL.listPAll, 2TDD;
w4 = Compile@88list, _Real, 2<<, If@Length@listD � 0,

0, listPAll, 1T.listPAll, 2TDD;
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Integrator

LeapFrog@ai_, af_, da_D := Module@8X, P<,
8X, P< = Zeldovich@ai, ai + da ê 2, ΦD;
Do@
plot = H∗GridPlot@XD∗LListPlot@X, AspectRatio → 1, ImageSize → 500,

PlotStyle → 8Black, PointSize@TinyD<DH∗MP@Log@CIC@XDDD∗L;
X += Drift@a, da, PD;
P −= Re@Kick@a + da ê 2, da, XDD;
, 8a, ai, af, da<D;

8X, P<
D

Interp2D@Field_, x_D := Module@8X1, X2, xm, xn, rx, f1, f2, f3, f4, n<,
X1 = Floor@xD;
X2 = Ceiling@xD;
xm = Mod@x, 1.0D;
xn = 1.0 − xm;

n = Length@FieldD;

f1 = Extract@Field, Mod@X1, nD + 1D;
f2 = Extract@Field, Mod@8X2PAll, 1T, X1PAll, 2T<�, nD + 1D;
f3 = Extract@Field, Mod@8X1PAll, 1T, X2PAll, 2T<�, nD + 1D;
f4 = Extract@Field, Mod@X2, nD + 1D;

f1 ∗ xnPAll, 1T ∗ xnPAll, 2T + f2 ∗ xmPAll, 1T ∗ xnPAll, 2T +

f3 ∗ xnPAll, 1T ∗ xmPAll, 2T + f4 ∗ xmPAll, 1T ∗ xmPAll, 2T
D

Grad2@F_, i_D :=
1

12
RotateRight@F, 82, 0<D −

2

3
RotateRight@F, 81, 0<D +

2

3
RotateLeft@F, 81, 0<D −

1

12
RotateLeft@F, 82, 0<D ê; i � 1

Grad2@F_, i_D :=
1

12
RotateRight@F, 80, 2<D −

2

3
RotateRight@F, 80, 1<D +

2

3
RotateLeft@F, 80, 1<D −

1

12
RotateLeft@F, 80, 2<D ê; i � 2
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Gravity

Drift@a_, da_, P_D :=
da

a2 Cosmology@H0, Ωm, ΩΛ, aD
P

Kick@a_, da_, X_D := ModuleB8δ, invm, Φ, accx, accy, acc<,
δ = CIC@XD ∗ m − 1.0;

H∗plot=MPBLogB δ+1

m
FF;∗L

invm = Map@inv @@ ð &,

Outer@List, fftIndgen@Length@δD, LD, fftIndgen@Length@δD, LDD, 82<D;
Φ = 3 ê 2 Ωm H02 ��@invm ∗ �@δDD ê a;

accx = Interp2DB
n

L
Grad2@Φ, 1D, ModBX

f2m n

L
, f2m nFF;

accy = Interp2DB
n

L
Grad2@Φ, 2D, ModBX

f2m n

L
, f2m nFF;

acc = 8accx, accy< ;

da

Cosmology@H0, Ωm, ΩΛ, aD
accF

Zeldovich@apos_, avel_, Φ_D := ModuleB8u, X, P<,

u = −:
n

L
Grad2@Φ, 1D,

n

L
Grad2@Φ, 2D>;

X = FlattenB MapIndexedB
L

n
ð2 + apos ð1 &, Transpose@u, 83, 1, 2<D, 82<F, 1F;

P = Flatten@Transpose@avel u, 83, 1, 2<D, 1D;
m = f2m2;

8X, P<F

Run

n = 28; L = 50.0; σ = 0.0; ai = 0.02; af = 1.02; ni = 50; da =
af − ai

ni
;

δ = 10 Chop@GRF@n, ð^H−0.5L &, L, σDD;
invm = Map@inv @@ ð &,

Outer@List, fftIndgen@Length@δD, LD, fftIndgen@Length@δD, LDD, 82<D;
Φ = ��@invm ∗ �@δDD;
Grid@88MP@δD, MP@ΦD<<D

8X, P< = Zeldovich@ai, ai, ΦD;
f2m = 2; 8X, P< = LeapFrog@ai, af, 0.02D;
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Appendix B

Effective Corrections From Newtonian
Symmetries

We here describe the derivation of effective corrections using Newtonian symmetries
presented by Mercolli and Pajer [49]. We start with the most general generalization of
the conservation of mass and Euler equations and than constrain the equations with
symmetries. The symmetries considered are

1. Statistical homogeneity and isotropy

2. Galilean invariance

3. Conservation of the total number of dark matter particles

4. Conservation of the total momentum

5. Equivalence principle

The statistical homogeneity and isotropy symmetry induces two constraints on correc-
tions. Firstly, all numerical coefficients of effective corrections cannot depend on spatial
coordinates. Secondly, all expectation values can only depend on the norm of the dis-
tance between the points where the operators in the expectation value are evaluated.

Galilean invariance is the invariance of the differential equations under the Galilean
transformations x→ x + ut for all velocities u and times t. Note that under this trans-
formation the density is invariant, δ → δ and the velocity of the dark matter fluid v
transforms as v → v − u. The Eulerian time derivatives transform non trivially since
∂t → ∂t + u · ∇. From the transformation of the velocity of the dark matter fluid and
Eulerian time derivative, it follows that the Lagrangian time derivative ∂t + v · ∇ is
invariant. We for this reason will use Lagrangian derivatives.

The conservation of the total number of dark matter particles implies that
∫

dx∂tρ =
0. Analogously, the conservation of total momentum can be written as

∫
dx∂t(vρ) = 0.

The equivalence principle should be seen as the restriction that all particles in a gravi-
tational field experience the same acceleration.
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In physical space in terms of Galilean invariant combinations, we can write the most
general linear extension of the conservation of mass and Euler equation as

(∂τ + v · ∇)ρ+ Cθθ + Cρθρθ =Cρρ+ C∆δ∆δ + C∆θ∆θ,

(∂τ + v · ∇)v + C∇φ∇φ =C∇ρ∇ρ+ C∇θ∇θ + C(ρ+θ)(ρ+ θ)∇φ.

with θ = ∇ · v. From the first symmetry, we conclude that all coefficients can only
depend on time. From the third symmetry we can conclude that Cρ = 0 and Cρθ = 1.
The fourth symmetry leads to Cθ = 1, while the fifth symmetry induces C(ρ+θ) = 0 and
C∇φ = 1. Hence the five symmetries reduce the extension to

(∂τ + v · ∇)ρ+ θ + ρθ =C∆δ∆δ + C∆θ∆θ,

(∂τ + v · ∇)v +∇φ =C∇ρ∇ρ+ C∇θ∇θ.

In comoving coordinates we can write these equations as

∂tδ + ∂i[(1 + δ)vi] =− χ1
∆δ

H
+ χ2

∆θ

H2

v̇i +Hvi + ∂iφ+ vj∂jv
i =− c2

s∂
iδ +

3

4

c2
sv

H
∆vi +

4c2
bv + c2

sv

4H
+

4c2
bv + c2

sv

4H
∂i∇ · v.
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