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1 Introduction

Our universe contains a vast diversity of intricate structures, ranging from the solar system and the Milky
Way to, on a much larger scale, the distribution of galaxies known as the large-scale structure (LSS) or the
cosmic web [7, 48, 49]. These structures were formed by gravitational collapse of small density fluctuations
in the early universe. Inflationary models1 predict these primordial fluctuations from fundamental physics
[25]. During inflation, small quantum fluctuations in the inflaton field(s) got stretched to superhorizon
scales and became classical. After inflation, these fluctuations reentered the horizon as fluctuations in the
gravitational potential and density fields. Before recombination the fluctuations oscillated, as matter in
the universe was charged and supported by photon pressure. After recombination the universe became
neutral, the photon pressure dropped and the fluctuations started to collapse under their own gravity.
This furnishes a deep connection between quantum physics in the early universe and the current density

1Alternative models exist, such as the topological defects models, but a discussion of these is outside the scope of this
essay.
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field, and the distribution of stars and galaxies in our universe.
A complete understanding of this process would require a theory of both the quantum world and

gravitational collapse. At the present time we lack such an understanding. On the one hand, we lack a
fundamental theory of inflation and the quantum to classical transition. On the other hand, we do not yet
understand the non-linear evolution of the density field and, in particular, the formation of the LSS. How-
ever, our current understanding does allow us to make predictions. Given a model of inflation, quantum
field theory enables us to predict the statistical nature of the primordial fluctuations in the gravitational
potential. Statistical mechanics allows us to evolve these fluctuations till recombination, and perturbation
theory and N -body simulations can be used to model the dynamics after recombination.

Many different inflationary models predict the gravitational potential to be a realization of a nearly
scale-invariant Gaussian random field. Over the last years a lot of attention has been put into finding
observables which differ between these models. A first observable is a slight tilt in the primordial power
spectrum, towards the red or the blue. However, most models predict the tilt to be very small. A sec-
ond observable are B-mode polarizations in the Cosmic Microwave Background radiation field (CMB),
interpreted as primordial gravitational waves, which would support the inflationary paradigm and deter-
mine the energy scale of inflation. A third observable are isocurvature perturbations in the density fields,
which can occur in multi-field inflation and would reject simple single-field inflationary models. A fourth
observable are deviations from the Gaussian statistic of the primordial fluctuations, known as primordial
non-Gaussianities. In this essay we will only consider the fourth observable.

For a long time it was thought that detailed observations of the CMB were the best probe to determine
the nature of primordial fluctuations and inflation, as the CMB reflects the density field at recombination.
Observations by the WMAP and Planck consortium show that the CMB closely resembles a nearly scale-
invariant Gaussian random field [26, 37]. The Planck consortium has measured a slight tilt to the red in
the power spectrum, and has only set bounds on the B-mode polarizations, isocurvature perturbations
and amplitude of non-Gaussianities, i.e., fNL = 0.8± 5.0 (of local type). These constraints still allow for
many different inflationary models. New CMB missions are being proposed, but due to cosmic variance,
the next generation of CMB observations are not expected to significantly improve these bounds.

A natural next step would be to use LSS survey data to improve our understanding of early universe
physics. Non-Gaussianities in the density field at recombination are namely expected to influence the
statistics of the LSS. This is a complicated observable, since the density field evolves non-linearly after
recombination and erases primordial statistics. We furthermore only observe the density fluctuations via
galaxies, which only form in high density regions. However, over the last few years our understanding of
both the evolution of the density field and the formation of galaxies has improved, and the next genera-
tion of LSS missions will detect tens of thousands of galaxy clusters. This combination of theoretical and
observational advancements might lead to tighter constraints on primordial non-Gaussianities.

In this essay we review ways to trace early universe physics with LSS surveys. We in particular
concentrate on the theoretical side of the statistics of the large-scale structure. In section 2 we briefly
discuss the generation of primordial fluctuations by inflation and the evolution of these fluctuations till
recombination. In section 3 we review current developments in standard and effective perturbation theory
of large-scale structure formation. We formalize and extend the formalism of Carroll et al. [9] to include
non-Gaussian statistics. In section 4 we discuss imprints of primordial non-Gaussianties on the galaxy
distribution of the LSS, and different methods to detect them. Finally, in section 5 we review current
constraints and prospects.

2 From inflation to the CMB

Inflation theory predicts that the classical fluctuations in the gravitational potential were formed from
quantum fluctuations in the inflaton field(s) during inflation and reentered the horizon after inflation.
After reentry, the fluctuations evolved in a photon baryon plasma till recombination. The state of the
fluctuations at this moment can be observed in the CMB. In this section we briefly review the predictions
of primordial fluctuations by inflation theory and the evolution of these fluctuations in the photon baryon
plasma till recombination.
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2.1 Primordial fluctuations from inflation

The simplest model of inflation is single field slow-roll inflation governed by the action

S =

∫
d4x
√
−g
[
−1

2
∂µφ∂

µφ− V (φ)

]
, (1)

with the inflaton potential V and field φ minimally coupled to a homogeneous Friedmann-Robertson-
Walker (FRW) metric gµν , defined by the equation

ds2 = gµνdxµdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2[sin2(θ)dφ2 + dθ2]

]
, (2)

with scale factor a, curvature k and g the determinant of gµν [3, 43]. For convenience, we have set Planck’s
constant and the speed of light in vacuum to unity, i.e., ~ = c = 1. For single field inflation, the theory
is completely specified by the potential V . The inflaton field φ corresponds to a particle present in the
early universe which led to the epoch of inflation. The fundamental theory describing the field φ induces
the potential V . So far, we do not know whether inflation is governed by only one field and if so, which
particle corresponds to φ. We furthermore lack a fundamental theory describing the inflaton field2. For
this reason we consider a generic potential leading to sufficient inflation to explain the flatness and horizon
problem3.

An inflaton potential V generally has a plateau region in which inflation occurs (see figure 1). The
inflaton field slowly rolls down the plateau towards the minimum, where it rapidly oscillates. This is
known as slow-roll inflation. Formally a potential V leads to slow-roll inflation if there exists a region in
which the slow-roll parameters ε and η defined as

ε = − Ḣ

H2
, η =

ε̇

Hε
, (3)

satisfy the slow-roll conditions ε < 1, |η| < 1, with Hubble parameter H = ȧ
a and the dot denoting a

derivative with respect to time. Using the Friedmann equation, which describes the evolution of a FRW
metric subject to Einstein’s theory of general relativity, we can approximate the slow-roll parameters in
terms of the potential and its derivatives

εV =
M2
pl

2

(
V ′

V

)2

, ηV = M2
pl

|V ′′|
V

, (4)

with Mpl =
√

~c
8πG = 2.4× 1018 GeV the Planck mass and the primes denoting derivatives of the potential

V with respect to the field φ. In equation (4), we observe that the slow-roll conditions indeed require a
plateau region in the potential.

A classical treatment of equation (1) with a potential satisfying the slow-roll conditions leads to an
epoch of inflation. Quantum fluctuations around the classical solution lead to fluctuations in the gravita-
tional potential after inflation. As the slow-roll action is non-linear it is usually analysed perturbatively.
To leading order in slow-roll parameters ε and η, the action reduces to a harmonic oscillator leading to
Gaussian fluctuations after inflation. These Gaussian fluctuations can be formally represented by a Gaus-
sian random field as discussed in section 2.1.1. Higher order corrections in the action lead to deviations
from the Gaussian statistics considered in section 2.1.2. For a derivation of these results see [31] and [11].

2.1.1 Gaussian fluctuations from slow-roll inflation

A Gaussian random field is a statistical object of which the realizations are functions having a Gaussian
PDF at every point and are completely described by the two-point correlation function [1]. Examples of
Gaussian fields can be observed in noise in telephone cables [39], shallow ocean waves and mountains (see
figure 2) [30]. From inflation theory it follows that also the primordial fluctuations in the gravitational

2There exist several proposals, such as inflation governed by the Higgs field or particles predicted by string theory.
3During inflation the scale factor a must at least grow by a factor e64 in order to explain the observed flatness of our

universe and extreme isotropy in the CMB [36].
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Figure 1: The general form of a slow-roll inflation
potential.

Figure 2: A realization of a two-dimensional Gaussian
random field, by Hidding [20].

field are Gaussian distributed [15, 23]. Formally a realization of a Gaussian random field on the volume
R3 is a function f : R3 → R such that the probability density for f to assume the values f1, . . . , fn in the
points x1, . . . ,xn ∈ R3 is

P [f1, . . . , fn] =
e−

1
2

∆fi(M
−1)ij∆fj

[(2π)n detM ]−1/2
, (5)

with ∆fi = fi − 〈f(xi)〉 and M = (Mij) the auto-correlation matrix where Mij = ξ(xi,xj). Here ξ is the
two-point correlation function

ξ(xi,xj) = 〈f(xi)f(xj)〉. (6)

Note that the Gaussian random field is indeed fully characterized by ξ; higher order correlation functions
can be expressed in terms of ξ by Wick’s theorem [35]. Colloquially odd-point correlation functions vanish
and even-point correlation functions are equal to the sum of the product of all pairings of the points, i.e.,

〈f(x1)f(x2)f(x3)〉 = 0, (7)

〈f(x1)f(x2)f(x3)f(x4)〉 = ξ(x1,x2)ξ(x3,x4) + ξ(x1,x3)ξ(x2,x4) + ξ(x1,x4)ξ(x2,x3), (8)

〈f(x1)f(x2)f(x3)f(x4)f(x5)〉 = 0. (9)

For fields with statistical homogeneity and isotropy, the two-point correlation function only depends on
the distance between points, i.e., ξ(r) = ξ(x,x + r) with r = ‖r‖.

Define the Fourier transform f̂ of the function f as

f(x, t) =

∫
d3k

(2π)3
e−ik·xf̂(k, t). (10)

The statistics of the Fourier modes of a Gaussian random field take the particularly simple form

〈f̂(k1)f̂(k2)〉 = (2π)3δ(3)(k1 + k2)Pf (k1) (11)

with k1 = ‖k1‖ and Pf the Fourier transform of the two-point correlation function ξ, known as the power
spectrum.

To leading order, single field slow-roll inflation predicts the gravitational potential Φ to fluctuate as a
Gaussian random field with power spectrum

PΦ(k) =
1

8π2ε

H2

M2
pl

∣∣∣∣
k=aH

, (12)

with Mpl the Planck mass. The expression is evaluated at horizon exit, i.e., k = aH. Since both the Hubble
parameter H and slow-roll parameter ε only evolve slowly during slow-roll inflation, the fluctuations are
nearly scale-invariant and can be expressed as a power-law, i.e.,

PΦ(k) = As

(
k

k∗

)ns−1

. (13)

See figure 3a for a realization of a one-dimensional Gaussian random field with a power-law power spec-
trum. According to the most recent Planck observations, the amplitude As = (2.196 ± 0.060) × 10−9 at
scale k∗ = 0.05 Mpc−1 and the spectral index ns = 0.9677± 0.0060 [36].
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(a) A realization of a scale-invariant Gaussian random
field with spectral index ns = 0.9 and a Gaussian
smoothing function with σ = 1 pixels.
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(b) Local non-Gaussian fields corresponding to the
realization of figure 3a. The red line correspond to
fNL = 0.5 and the blue line to fNL = −0.5.

Figure 3: One-dimensional Gaussian and non-Gaussian field.

2.1.2 Non-Gaussianities from inflation

The simplest inflationary models lead to a highly Gaussian primordial gravitational potential. To be
precise, Maldacena [31] proved that inflationary models governed by (i) a single scalar field, (ii) with
canonical kinetic terms, (iii) which always satisfies slow-roll conditions, (iv) is initially in the Bunch-
Davies vacuum, and (v) is in accordance with Einstein’s theory of gravity, lead to negligible primordial
non-Gaussianities4. For a more extensive discussion see [11] and [28].

The violation of any of these conditions can lead to the occurence of measurable non-Gaussianities.
The simplest type of non-Gaussianities is the local type, first described by Komatsu and Spergel [27],
which is defined as

Φ(x) = ΦG(x) + fNL
[
Φ2
G(x)− 〈Φ2

G(x)〉
]

(15)

with ΦG a Gaussian random field and fNL the non-linear parameter measuring the amplitude of non-
Gaussianity (see figure 3b). The effect of the non-linear term is most easily characterized by higher-order
correlation functions. We here only consider the three-point function, with the corresponding bispectrum
BΦ,

〈Φ(k1)Φ(k2)Φ(k3)〉 =(2π)3BΦ(k1, k2, k3)δ(3)(k1 + k2 + k3). (16)

Statistical homogeneity and isotropy imply that the bispectrum only depends on the norm of the difference
of the momentum vectors: ‖k1−k2‖, ‖k1−k3‖, ‖k2−k3‖. The triangle condition k1 +k2 +k3 = 0 further
restricts the interesting configurations of momentum vectors to those forming a closed triangle. Hence
the bispectrum is completely determined by its value on a tetrahedron (see figure 4). It is common to
write the bispectrum in terms of the shape function SΦ defined as

SΦ(k1, k2, k3) =
(k1k2k3)2

NΦ
BΦ(k1, k2, k3), (17)

with NΦ a normalization constant such that SΦ(k, k, k) = 1. For local type non-Gaussianities the shape
function is

Sloc(k1, k2, k3) =
1

3

(
k1

k2k3
+

k2

k1k3
+

k3

k1k2

)
,

4 Slow-roll single field inflation generates a mix of local and equilateral non-Gaussianities with shape function

S(k1, k2, k3) ≈ (6ε− 2η)Slocal(k1, k2, k3) +
5

3
εSequil(k1, k2, k3). (14)

For small slow-roll parameters this tends to the local type non-Gaussianities with non-linear parameter f loc
NL = 5

12
(1 − ns) ≈

0.017, which is beyond the scope of current measurements. Shape functions characterize non-Gaussianities and are defined
later in this section.
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Figure 4: The left plot shows the tetrahedron domain of momentum configurations contributing to the
bispectrum. The right plot shows the bispectrum in the CMB corresponding to local primordial local
non-Gaussianities normalized with respect to a constant shape function [28].

k1

k2

k3

(a) Local or squeezed: k3 � k1, k2.

k1

k2

k3

(b) Equilateral: k1 ≈ k2 ≈ k3.

k1k2

k3

(c) Flattened: k3 ≈ k1 + k2.

Figure 5: Three triangle configurations [28].

peaking in the squeezed limit configuration k3 � k1 ≈ k2 (see figure 5). This generally corresponds to
non-Gaussianity being generated outside the the horizon by potentially multiple inflaton fields.

Theories with higher-order derivative operators, such as DBI inflation [2, 24], lead to the shape function
of the equilateral type

Sequil(k1, k2, k3) =
(k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)

k1k2k3
, (18)

peaking in the equilateral triangle configuration k1 ≈ k2 ≈ k3 (see figure 5). When the initial vacuum is
different from the Bunch-Davies vacuum, see for example [21], the shape function tends to the flattened
type

Sflat(k1, k2, k3) ∝ 6

[
k2

1 + k2
2 − k2

3

k2k3
+ 2 perm

]
+

2(k2
1 + k2

2 + k2
3)

(k1 + k2 − k3)2(k2 + k3 − k1)2(k3 + k1 − k2)2
, (19)

peaking in the flattened configuration k2 ≈ k3 ≈ k1/2 (see figure 5). For a more extensive overview of
the different kinds of violations and resulting non-Gaussianities, see the reviews by Liguori et al. [28] and
Chen [11].

2.2 Anisotropies in the CMB

The fluctuations in the gravitational potential Φ led to density fluctuations δ0 which evolved in the photon
baryon plasma. To linear order, which is a very good approximation, the density at redshift z can be
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(a) Planck CMB power spectrum. (b) Planck CMB bispectrum.

Figure 6: Most recent CMB power spectrum and bispectrum results from the Planck consortium [36].

expressed in terms of the primordial gravitational perturbation as

δ0(k, z) =M(k, z)Φ(k) (20)

with

M(k, z) =
2

3

k2T (k)D(z)

ΩmH2
0

, (21)

where k2 reflects the Poisson equation, Ωm the current matter density, D(z) the linear growth rate
and T (k) the matter transfer function. The transfer function contains effects like acoustic oscillations
leading to Doppler peaks, and silk damping. The function can be obtained by numerical evaluation of
the Boltzman equation.

To linear order the density fluctuations at the epoch of last scattering inherit the statistics of the
gravitational perturbation, i.e.,

〈δ0(k1, z) . . . δ0(kn, z)〉 =

[
n∏
i=1

M(ki, z)

]
〈Φ(k1) . . .Φ(kn)〉. (22)

We conclude that to linear order, the anisotropies of the CMB directly reflect the density perturbation at
recombination. By measuring the CMB, we can infer the primordial fluctuations generated during inflation
and possibly reheating. In particular, the Planck consortium has found a nearly scale-invariant power
spectrum with acoustic peaks (see figure 6a) and a bispectrum (see figure 6b) constraining primordial

non-Gaussianities as f localNL = 0.8 ± 5.0, fequilNL = −4 ± 43 and forthNL = −26 ± 21 for local, equilateral and
orthogonal type respectively at 68% confidence levels [37].

However, the CMB can only be measured on a two-dimensional sphere surrounding us. This sets a
natural limit on the amount of date we can collect to test our theories. The uncertainty of measurables
on large scales that cannot be reduced indefinitely by collecting more CMB data is known as cosmic
variance. The Planck consortium has nearly reached this limit, while they only have been able to set
bounds on the existence of primordial non-Gaussianities. The next generation of CMB surveys are not
expected to significantly improve these bounds. The next leap forward might well be the use of LSS data
in the quest for non-Gaussianities; LSS surveys provide an immense amount of three dimensional data
and might enable us to improve existing bounds.
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3 Non-Gaussianities in the LSS density field

At recombination, the photons and baryons decouple. Photons stream freely through the universe, while
matter fluctuations start to collapse under their own gravity. At this point the density perturbation

δ(x) =
ρ(x)− 〈ρ(x)〉
〈ρ(x)〉

(23)

closely resembles a Gaussian random field. The current large-scale structure (LSS), however, is a highly
non-Gaussian field with nontrivial higher order statistics. The non-Gaussianities in this field originate
from three different sources [5, 28]:

• Gravitational instability : Gravitational collapse is a non-linear process leading to clusters, filaments,
voids. Note from equation (23) that δ → −1 in voids while δ →∞ in clusters. Hence gravitational
instability leads to an asymmetry in the PDF of δ which implies non-Gaussian statistics.

• Primordial non-Gaussianities: Alongside the non-Gaussianties generated after recombination, it
is natural to assume that primordial non-Gaussianities in the density field at recombination will
influence the level of non-Gaussianity in the current large-scale structure.

• Halo biasing : Current large-scale structure surveys observe galaxies, which are used to trace the
underlying density field. However, galaxies only form in dense regions and different populations of
galaxies are known to trace different features of the density field. Non-linear halo biasing can lead
to non-Gaussianities. There exist attempts to measure the density field directly using gravitational
lensing. We will here, however, concentrate on surveys aimed at galaxies.

If we are to measure primordial non-Gaussianities from the large-scale structure we need an accurate
understanding of these three effects. During the last few years the scientific community has developed
more sophisticated perturbation schemes and studied non-Gaussianities in N -body simulations to im-
prove our understanding of gravitational instability theory and the effect of primordial non-Gaussianities
on the LSS density field. Moreover, Dalal et al. [13] showed that halo biasing is intrinsically influenced by
primordial non-Gaussianities, i.e., the presence of primordial non-Gaussianities influences the formation
of galaxies which leads to a significant change in the biasing relation. In this section we review current
developments in our understanding of the LSS density field. We discuss standard perturbation theory
and effective field theory and compare the theories with perturbative quantum field theory. We follow
the discussion by Carroll et al. [9] and extend this discussion by deriving Feynman rules, relating the
discussion to solutions in an Einstein-de Sitter universe, and by including non-Gaussian initial conditions.
We subsequently show how gravitational instability theory and primordial non-Gaussianties lead to non-
Gaussian statistics of the matter density. In section 4 we focus on halo biasing and methods to measure
primordial non-Gaussianities in LSS surveys.

Large-scale structure formation is a process governed by gravity. While general relativistic approaches
to LSS formation exist and our discussion can be extended to include relativistic corrections, we will for
simplicity model LSS formation by a single Newtonian pressureless fluid in an expansing FRW background
universe. We will neglect radiation and consider baryonic and dark matter as a single fluid. This is a
valid approximation on subhorizon scales after the epoch of recombination. The evolution of such a fluid
is governed by the continuity equation, Euler equation and Poisson equation, respectively

0 = ∂τδ + ∂i((1 + δ)vj), (24)

0 = ∂τv
i +Hvi + ∂iψ + vj∂jv

i, (25)

∇2ψ =
3

2
ΩH2δ, (26)

with conformal time τ defined by dt = a−1dt, conformal Hubble parameterH = a′

a with the prime denoting
a derivative with respect to conformal time, gravitational perturbation ψ, and density perturbation δ. This
is a set of coupled non-linear partial differential equations. The density fluctuations induce a gravitational
potential via the Poisson equation. The potential drives the flow of matter via the Euler equation,
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constraint by the continuity equation.
In order to understand the consequences of these LSS equations, we approximate solutions with

perturbation theory. We make the simplifying assumption that the velocity field is a gradient field5 and
work with the divergence θ = ∂iv

i. In Fourier space, the LSS equations can be expressed as

0 = ∂τδ(τ,k) + θ(τ,k) +

∫
d3q

(2π)3

k · q
q2

δ(τ,k− q)θ(τ,q),

0 = ∂τθ(τ,k) +Hθ(τ,k) +
3

2
ΩH2δ(τ,k) +

∫
d3q

(2π)3

k2q · (k− q)

2q2(k− q)2
θ(τ,k− q)θ(τ,q), (27)

where we suppress the hat notation for Fourier space variables.
For clarity and in order to make contact with perturbative quantum field theory we bundle the density

perturbation and velocity divergence in a vector field

φ(τ,k) =

(
δ(τ,k)
θ(τ,k)

)
, (28)

and write the system of equations as

0 = Dijφj(τ,k)− 1

2

∫∫
d3q1d3q2

(2π)6
M i
jk(k,q1,q2)φj(τ,q1)φk(τ,q1), (29)

with D containing the first order conformal time derivatives and linear terms and M i
jk the quadratic

interactions. To define M uniquely, we take M to be symmetric in its lower indices. For our set of
differential equations, D and M are given by

Dij =

(
∂τ 1

3
2ΩH2 ∂τ +H

)
, (30)

M δ
ij(k,q1,q2) =

(
0 −k·q2

q22

−k·q1

q21
0

)
(2π)3δ(3)(k− q1 − q2), (31)

M θ
ij(k,q1,q2) =

(
0 0

0 −k2(q1·q2)
q21q

2
2

)
(2π)3δ(3)(k− q1 − q2). (32)

Momentum conservation is enforced by the Dirac delta function in M . The factor (2π)3 comes form the
Fourier convention used in this essay. The perturbation theory described below is most transparent if we
follow Carroll et al. [9] by suppressing the integrals over q1 and q2, and time and momentum dependence,

0 = Dijφj −
1

2
M i
jkφ

jφk. (33)

Interactions beyond the quadratic term can be included by adding higher order interactions

− 1

3!
Nφ3 − 1

4!
Oφ4 − . . . (34)

However, for our discussion the quadratic interaction suffices.

3.1 Standard perturbation theory

Traditionally, the LSS equations (33) are solved with standard perturbation theory. We approximate φ
by an expansion in terms of a perturbation parameter ε, i.e.,

φSPT = εφi(1) + ε2φi(2) + ε3φi(3) + . . . (35)

5On large scales vorticity is suppressed by the expansion of the universe.
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This is an approximation as some solutions to (33) cannot be expressed as an expansion in ε. Substituting
φSPT in the LSS equations and selecting terms proportional to powers in ε gives a set of differential
equations

O(ε) : Dijφ
j
(1) = 0, (36)

O(ε2) : Dijφ
j
(2) =

1

2
M i
jkφ

j
(1)φ

k
(1), (37)

O(ε3) : Dijφ
j
(3) =

1

2
M i
jkφ

j
(1)φ

k
(2) +

1

2
M i
jkφ

j
(2)φ

k
(1), (38)

O(. . .) : . . . (39)

where we suppress integrals over momentum space corresponding to the interaction M . Note that the
differential equation for φ(i) only depends on φ(j) with j < i. We can iteratively solve the differential
equations with a retarded Green function G, satisfying

DijG
j
k(τ, τin) = δikδ(τ − τin), (40)

with τin the initial time6. For an Einstein-de Sitter universe, spatially flat and matter-dominated with
Ω = 1, a ∝ τ2 and H = 2

τ , the retarded Green function is

G(τ1, τ2) =

 3τ51 +2τ52
5τ31 τ

2
2

−τ51 +τ52
5τ31 τ2

−6(τ51−τ52 )

5τ41 τ
2
2

2τ51 +3τ52
5τ41 τ2

Θ(τ1 − τ2) (41)

with Θ the Heaviside step function. The leading order term φ(1) is solved by

φi(1)(τ,k) = Gij(τ, τin)φjin(k), (42)

with φin the initial condition at τ = τin. The initial time can be any time at which the initial conditions
are satisfied. In LSS formation it is common to take τin to be the time of recombination. The higher
order terms φ(2), and φ(3) can be solved using the solution for φ(1):

φi(2) =
1

2

∫ τ

τin

dτ ′Gij(τ, τ
′)M j

kl(τ
′)φk(1)(τ

′)φl(1)(τ
′), (43)

φi(3) =

∫ τ

τin

dτ ′Gij(τ, τ
′)M j

kl(τ
′)φk(1)(τ

′)φl(2)(τ
′). (44)

The solution for φ(1), φ(2), and φ(3) can be expressed in terms of Feynman diagrams (see figure 7). In
these Feynman diagram, the horizontal and vertical direction respectively represent space and time. The
lower and upper horizontal lines represent the initial and final field. The vertical line represents the Green
function or propagator in quantum field theory language. The quadratic coupling of the Fourier modes
M j
kl is represented by a vertex. The integral over time τ ′ reflects the fact that the interaction occurred

between time τin to τ . Couplings beyond the quadratic coupling M will as in perturbative quantum field
theory lead to vertices with more legs. Note that n-point interactions in the equation of motion will
always lead to a vertex with n legs pointing down and one leg pointing up. This prevents us from drawing
loop diagrams, reflecting the fact that our discussion is fully determined by specifying φin.

Using the Feynman diagrams we can easily write any term φ(i) in the perturbation expansion of φ,
by drawing all diagrams with one leg connecting to the upper horizontal line and i legs connecting to the
lower horizontal line. The vertices always have one upper and two lower legs. The symmetry factors work
in exact analogy with perturbative quantum field theory. This is equivalent to deriving the differential
equation by extending the set of equations (39) and solving the equation by means of the retarded Greens
function.

In the large-scale structure literature, standard perturbation theory in an Einstein-de Sitter universe is
often written in a slightly different formulation. In an Einstein-de Sitter universe, we can use Ω = 1, a(τ) ∝

6Formally we are free to choose any Green function. We select the retarded Green function to enforce causality on our
solutions.
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τin

τ

φi(1)(τ) = Gij

φjin

τin

τ

φi(2)(τ) =

Gij

M j
kl(τ

′)

Gkn Glm

φnin φmin
τin

τ

φi(3)(τ) = 2×

Gij

M j
kl(τ

′)
Mk
mn(τ ′′)

Gmo Gnp
Glq

φoin φpin φqin

Figure 7: Standard perturbation theory in terms of Feynman diagrams, with all indices and conformal
time dependences explicitly expressed. The multiplicative factor 2 in expression of φ(3) is a symmetry
factor, reflecting different ways of writing the Feynman diagram as in perturbative quantum field theory.

τ2,H = 2
τ and factor out a factor H from the velocity field to bring equation (27) in a homogeneous form

with respect to conformal time τ . We for this reason expand δ and θ in a factorized form

δ(τ,k) =
∞∑
i=1

δ(i)(τ,k) =
∞∑
i=1

ai(τ)δ̃(i)(k) (45)

θ(τ,k) =

∞∑
i=1

θ(i)(τ,k) = −H
∞∑
i=1

ai(τ)θ̃(i)(k). (46)

Substituting the expansion in equations (27) and using that from the continuity equation we can show
that the first order corrections in δ and θ coincide, i.e., δ̃(1) = θ̃(1), we solve the equations by

δ̃(n)(k) =

∫
d3q1 . . .

∫
d3qnδ

(3)(k− q1 − · · · − qn)Fn(q1, . . . ,qn)δ̃(1)(q1) . . . δ̃(1)(qn), (47)

θ̃(n)(k) =

∫
d3q1 . . .

∫
d3qnδ

(3)(k− q1 − · · · − qn)Gn(q1, . . . ,qn)δ̃(1)(q1) . . . δ̃(1)(qn), (48)

with Fn and Gn symmetrized kernels containing the non-linear nature of the continuity and Euler equa-
tions. In particular, by construction the first order kernels are F1 = G1 = 1, and the second order kernels
read

F2(q1,q2) =
5

7
+

1

2

q1 · q2

q1q2

(
q1

q2
+
q2

q1

)
+

2

7

(q1 · q2)2

q2
1q

2
2

, (49)

G2(q1,q2) =
3

7
+

1

2

q1 · q2

q1q2

(
q1

q2
+
q2

q1

)
+

4

7

(q1 · q2)2

q2
1q

2
2

. (50)

Higher order kernels can be obtained from a recursion relation for which we refer to Bernardeau et al. [5].
Note that these solutions are formally the same as we would have obtained by calculating the Feynman
diagrams corresponding to φ(n) with an Einstein-de Sitter propagator as in equation (41). One of the
advantages of this formulation is that we do not have to worry about evaluating the internal structure of
every vertical tree. When considering correlation functions of density perturbations evaluated at the same
time, we furthermore do not have to worry about the time component or the velocity field perturbations as
these will follow automatically from equation (45). However, when considering more general cosmologies
with for example a cosmological constant, effective (imperfect) or relativistic fluid(s) with possible vorticity
generation we will have to reside to the more general framework. For simplicity, we will in this essay write
the general Feynman diagrams but only give the specific expressions in terms of the kernels.

3.2 Correlation functions

So far we assumed the initial conditions φin at time τin to be known and approximated its evolution in
time. However, as the density field at recombination originated from quantum fluctuations at inflation,
we only know the statistical properties of the initial conditions. Gravitational instability theory can, for
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this reason, at most approximate the statistical properties of the LSS. Using standard perturbation theory
the two- and three-point correlation function of the LSS are

〈φiφj〉 =ε2〈φi(1)φ
j
(1)〉+ ε3

[
〈φi(1)φ

j
(2)〉+ 〈φi(2)φ

j
(1)〉
]

+ ε4
[
〈φi(1)φ

j
(3)〉+ 〈φi(3)φ

j
(1)〉+ 〈φi(2)φ

j
(2)〉
]

+O(ε5) (51)

〈φiφjφk〉 =ε3〈φi(1)φ
j
(1)φ

k
(1)〉+ ε4

[
〈φi(1)φ

j
(1)φ

k
(2)〉+ 〈φi(1)φ

j
(2)φ

k
(1)〉+ 〈φi(2)φ

j
(1)φ

k
(1)〉
]

+O(ε5), (52)

where we suppressed the momentum dependence corresponding to the superscript indices. For generic
initial conditions, in practice a Gaussian field with a small non-Gaussian contribution, these correlators
can be expressed in terms of the n-point correlation functions or n-dimensional spectra of the initial
conditions. For the two-point correlation function the first few correlators give

〈φi(1)φ
j
(1)〉 = Gil(τi, τin)Gjm(τj , τin)〈φlin(τi)φ

m
in(τj)〉 = P ij(11)(τi, τj), (53)

〈φi(1)φ
j
(2)〉 = 〈φi(1)(τi)

1

2

∫ τj

τin

dτ ′Gjk(τj , τ
′)Mk

lm(τ ′)φl(1)(τ
′)φm(1)(τ

′)〉

=
1

2

∫ τj

τin

dτ ′Gjk(τj , τ
′)Mk

lm(τ ′)Bilm
(111)(τi, τ

′, τ ′) (54)

〈φi(1)φ
j
(3)〉 = 〈φi(1)(τi)

∫ τj

τin

dτ ′Gjk(τj , τ
′)Mk

lm(τ ′)φl(1)(τ
′)φm(2)(τ

′)〉

=
1

2

∫ τj

τin

dτ ′
∫ τ ′

τin

dτ ′′Gjk(τj , τ
′)Mk

lm(τ ′)Gmn (τ ′, τ ′′)Mn
op(τ

′′)T ilop(1111)(τi, τ
′, τ ′′, τ ′), (55)

where the correlators 〈φ(1)φ(1)〉, 〈φ(1)φ(1)φ(1)〉, and 〈φ(1)φ(1)φ(1)φ(1)〉 are written as

P ij(11)(τi, τj) = Gil(τi, τin)Gjm(τj , τin)(2π)3P lmφin(ki)δ
(3)(ki + kj), (56)

Bijk
(111)(τi, τj , τk) = Gil(τi, τin)Gjm(τj , τin)Gkn(τk, τin)(2π)3Blmn

φin
(ki,kj ,kk)δ

(3)(ki + kj + kk), (57)

T ijkl(1111)(τi, τj , τk, τl) = Gim(τi, τin)Gjn(τj , τin)Gko(τk, τin)Glp(τl, τin)

× (2π)3Tmnopφin
(ki,kj ,kk,kl)δ

(3)(ki + kj + kk + kl), (58)

with Tmnopφin
the full trispectrum. Note that often the connected trispectrum is used which is obtained by

subtracting the Gaussian trispectrum as discussed below. For the three-point function the first few terms
give

〈φi(1)φ
j
(1)φ

k
(1)〉 = Gil(τi, τin)Gjm(τj , τin)Gkn(τk, τin)〈φlin(ki)φ

m
in(kj)φ

n
in(kk)〉 = Bijk

(111)(τi, τj , τk), (59)

〈φi(1)φ
j
(1)φ

k
(2)〉 = 〈φi(1)(τi)φ

j
(1)(τj)

1

2

∫ τk

τin

dτ ′Gkl (τk, τ
′)M l

mn(τ ′)φm(1)(τ
′)φn(1)(τ

′)〉

=
1

2

∫ τk

τin

dτ ′Gkl (τk, τ
′)M l

mn(τ ′)T ijmn(1111)(τi, τj , τ
′, τ ′), (60)

where we suppress the integrals over momentum space corresponding to the interaction terms. In the
remainder of this essay we use P ij(11), B

ijk
(111), and T ijkl(1111) in a slightly different way as we will discard the

factor (2π)3δ(3)(. . . ).

3.2.1 Gaussian initial conditions

For Gaussian initial conditions correlation functions containing an odd number of initial fields vanish.
Using Wick’s theorem the initial trispectrum can be expressed in terms of the initial power spectrum, i.e.,

T ijklG,φin
(τi, τj , τk, τl) = P ijφin(τi, τj)P

kl
φin

(τk, τl) + P ikφin(τi, τk)P
jl
φin

(τj , τl) + P ilφin(τi, τl)P
jk
φin

(τj , τk). (61)

The trispectrum for non-Gaussian initial conditions is often written as the Gaussian trispectrum plus the
so-called connected trispectrum, i.e.,

T ijklφin
= T ijklG,φin

+ T ijklc,φin
. (62)
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Using equation (61) and explicitly writing the momentum dependence, we can evaluate these correlation
functions for Gaussian initial conditions in terms of the primordial power spectrum. For example, for the
〈φ(1)φ(3)〉 term we get

〈φi(1)φ
j
(3)〉 = (2π)3δ(3)(ki + kj)

∫ τj

τin

dτ ′
∫ τ ′

τin

dτ ′′
∫

d3q

(2π)3
Gjk(τi, τ

′)Mk
lm(τ ′,kj ,q,kj − q)Gmn (τ ′, τ ′′)

×Mn
op(τ

′′,kj − q,−q,kj)P
ip
(11)(τi, τ

′′, ki)P
lo
(11)(τ

′, τ ′′, q), (63)

where one of the Wick contractions vanishes for our set of differential equations (27).

3.2.2 Feynman rules

The calculations above can be systematically expressed in terms of Feynman diagrams with the following
Feynman rules. The εi order approximation of the n-point function with generic initial conditions can be
determined as follows:

1. Draw all Feynman diagrams with n legs connecting to the upper horizontal line and up to i legs
connecting to the lower horizontal line. The interaction vertex has one upper leg and two lower legs.

2. Label all legs with a momentum vector, respecting conservation of momentum at the vertices. Every
leg corresponds to a Green function or propagator G. Label all vertices with a time parameter. Every
vertex correspond to a interaction term M and an integral over time.

3. Connect all lower legs with a comb. The comb corresponds to (2π)3 times the full i-dimensional
spectrum (power spectrum, bi-spectrum, trispectrum, etc.).

4. Multiply by the symmetry factor analogous to perturbative quantum field theory.

5. Integrate over the undetermined momenta, running in the loops, i.e.,
∫ d3q

(2π)3
. In perturbative

quantum field theory this corresponds to virtual particles.

6. Multiply by an extra Dirac delta function δ(3)(k1 + · · ·+ ki).

For Gaussian initial conditions, we can use Wick’s theorem expressed for the trispectrum in equation (61)
to modify step 3 by: “Diagrams with i being odd vanish. For even i, connect the lower legs in all possible
pairings with a comb with two legs. The comb corresponds to the power spectrum.” For an example see
figure 8 corresponding to the 〈φ(1)φ(1)〉 and 〈φ(1)φ(3)〉 correlation functions for Gaussian initial conditions
evaluated in equation (63). Note that we integrate over the undetermined momentum vector q which
appears in the power spectrum term P lo(11). This can be seen as integrating over the initial power spectrum
representing our ignorance of the initial conditions. This is analogous to momentum running in loops in
quantum field theory.

Finally for generic initial conditions we can express the correlation function in terms of the connected
spectra by performing both the Gaussian rule and the generic rule where the comb with i legs now cor-
respond to the connected spectrum. This is the notation we will adopt in this essay as it most explicitly
describes both the Gaussian and non-Gaussian effect on correlation functions.

For fluctuations evolving in an Einstein-de Sitter universe, we can simplify the calculation considerably
using the kernel notation. Note that we only have to consider δ and do not have to perform the internal
evaluation of the vertical trees. We can identifying φ(i) with δ(i), and let the coupling M correspond
to a vertex with one upper leg and i lower legs directly connecting the upper and lower horizontal lines
corresponding to a factor

Fi(q1, . . . ,qi). (64)

We do not identify a time with the vertex and do not integrate over it. Note that we do have to consider
the symmetry factor. Neglecting a factor (2π)3δ(3)(k1 + · · · + ki) gives the LSS density i-dimensional
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τin

τ

〈φ(1)φ(1)〉 =

τin

τ

〈φ(1)φ(3)〉 = 2×

q

+2×

τin

τ

q

Figure 8: Correlation functions in terms of Feynman diagrams, assuming Gaussian initial conditions.
Note that the second Feynman diagram in 〈φ(1)φ(3)〉 vanishes for our choice of equations of motion.

spectrum. In quantum field theory this procedure is known as ‘amputating the legs’. The 〈δ(1)δ(3)〉
correlation function for Gaussian initial conditions now becomes

〈δ(1)(τ,k1)δ(3)(τ,k2)〉 =

[
6

∫
d3qF3(k,q,−q)P(11)(k1)P(11)(q)

]
(2π)3δ(3)(k1 + k2). (65)

For non-Gaussian corrections we would have to add a term containing the initial connected trispectrum.
We illustrate this expression in terms of a Feynman diagram in figure 9.

3.3 The matter power spectrum

The matter power spectrum in terms of Feynman diagrams to loop order is given in figure 11,

〈δ(k1)δ(k2)〉 =(2π)3[P(11)(k1) + P(12)(k1) + P(22)(k1) + P(13)(k1) + . . . ]δ(3)(k1 + k2). (66)

The first diagram corresponds to the linearly extrapolated power spectrum. The second diagram corre-
sponds to a terms vanishing for Gaussian initial conditions and gives the first correction for non-Gaussian
initial conditions. The third and fourth diagrams correspond to two loop order terms forming from grav-
itational collapse.

In an Einstein-de Sitter universe, we can express these diagrams in terms of the kernels Fn

〈δ(1)(k1)δ(1)(k2)〉 = (2π)3P(11)(k1)δ(3)(k1 + k2), (67)

P(12)(k) = 2

∫
d3qF2(q,k− q)B(111)(−k,q,k− q), (68)

P(22)(k) = 2

∫
d3qF2(k− q,q)P(11)(|k− q|)P(11)(q), (69)

P(13)(k) = 6

∫
d3qF3(k,q,−q)P(11)(k)P(11)(q). (70)

In terms of the growing mode D, the linear extrapolated power spectrum is P(11)(k) = D2(τ)Pin(k).

The ratio βδ = PGδ /P
NG
δ , with PGδ = P(11) + P(22) + P(13) the Gaussian contribution and PNGδ = P(12)

the non-Gaussian contribution, is a measure of the non-Gaussianity contribution to the matter power
spectrum. Evaluation of βδ shows that primordial non-Gaussianities significantly influence the matter
power spectrum on small scales, while leaving the matter power spectrum on large scales invariant. The
approximation developed in equation (66) in an Einstein-de Sitter universe is in good agreement with
N -body simulation with primordial non-Gaussianities of local type (see figure 10).

3.4 The matter bispectrum

The matter bispectrum can be expressed in terms of Feynman diagram, as in figure 12, and

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3[B(111)(k1,k2,k3) +B(112)(k1,k2,k3) + . . . ]δ(3)(k1 + k2 + k3). (71)
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τin

τ

qk1

F3

Figure 9: Correlation function 〈δ(1)δ(3)〉 in
terms of Feynman diagrams in the Einstein-de
Sitter universe.

Figure 10: The fraction βδ(k, z) =
PGδ (k)/PNGδ (k) for local non-Gaussianity
with fNL = ±100, at different redshifts. The
solid line denotes 1-loop standard perturbation
theory predictions [14].

+ + + +

Figure 11: The Feynman diagrams corresponding to the matter power spectrum to sub-leading order.
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+ +

Figure 12: The Feynman diagrams corresponding to the matter bispectrum to sub-leading order.

The first term, B(111), vanishes for Gaussian initial conditions and is the first correction due to primordial
non-Gaussianities. The second term is due to gravitational instability. In an Einstein-de Sitter universe,
we express this term in terms of the kernel Fn,

B(112)(k1,k2,k3) = 2F2(k1,k2)P(11)(k1)P(11)(k2) + 2 perm

+

∫
d3q

(2π)3
F2(q,k3 − q)T0(q,k3 − q,k1,k2) + 2 perm, (72)

with T0 the primordial trispectrum.
The contribution of primordial non-Gaussianities in the matter bispectrum is normally measured in

terms of the reduced bispectrum

Q(k1,k2,k3) =
B(k1,k2,k3)

P(11)(k1)P(11)(k2) + P(11)(k1)P(11)(k3) + P(11)(k2)P(11)(k3)
. (73)

For Gaussian initial conditions the reduced bispectrum is to tree-level independent of time, and in the
equilateral configuration k1 = k2 = k3 equal to 4/7. Different types of primordial non-Gaussianity lead
to different reduced bispectra. See figure 13 for a comparison between perturbation theory and N -body
simulations and different reduced bispectra for different primordial non-Gaussianity types. The 1-loop
correction is a reasonable approximation. The reduced bispectrum is a sensitive probe for primordial
non-Gaussianities and allows us to distinguish different types of non-Gaussianities (see figure 14). We
observe that equation (71) for an Einstein-de Sitter universe is a good approximation and that primordial
non-Gaussianties lead to significant corrections to the matter bispectrum on large scales.

3.5 Effective field theory

The LSS equations are traditionally solved using standard perturbation theory. This theory works well
in the linear and mildly non-linear region. However, it has been shown that it breaks down on short
scales k > kNL ≈ (10 Mpc)−1 as the perturbations become large due to non-linear evolution [4, 8, 9]. If
perturbation theory breaks down at short scales it also becomes untrustworthy for long wavelengths due to
couplings of wavelengths at quadratic order. This problem has recently been addressed with effective field
theory. This theory smoothens short-wavelength scales (k > kNL), which cause problems in standard
perturbation theory, and only model long-wavelength modes (k < kNL), which can be evaluated even
when standard perturbation theory breaks down. Effective field theory is a common tool in high energy
physics in cases where we either do not know the ultra-high energy physics and renormalise the theory or
would like to use a simplified version of a known underlying theory.

We here smooth the short-wavelength physics as discussed by Carrol et al. [9]. We start by splitting
the density and velocity fluctuations in short- and long-wavelength modes. Let the long-wavelength modes
be defined as a convolution of the field φ with a smoothing function depending on the cut-off Λ ≈ kNL,

φiL(x) =

∫
d3y W i

Λ(x− y)φ(y). (74)

Define the short wavelength modes as φS = φ− φL. In Fourier space the convolution becomes a multipli-
cation,

φiL(ki) = W i
Λ(ki)φ

i(ki) and φS(k) = φ(k)− φL(k). (75)
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Figure 13: The left plot: reduced matter bispectrum as a function of the angle θ between k1 and k2 with
k1 = 0.094hMpc−1 and k2 = 1.5k1 for different redshifts (left z = 0, right z = 1) and local non-Gaussianity
(upper fNL = 100, lower fNL = −100). The crosses correspond to results from N -body simulations, the
dashed lines to tree-level standard perturbation theory and the solid lines to 1-loop standard perturbation
theory [14]. The right plot: reduced matter bispectrum in the equilateral configuration k = k1 = k2 = k3

for different primordial non-Gaussian conditions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

Θ�Π

Q
Hk 1

,k
2
,Θ

L

matter reduced bispectrum, z = 1

k1 = 0.01 h-1Mpc
k2 = 1.5k1

Gaussian IC
GIC + Local NG, -4 < fNL < 80

(a) Local non-Gaussianities

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

Θ�Π

Q
Hk 1

,k
2
,Θ

L

matter reduced bispectrum, z = 1

k1 = 0.01 h-1Mpc
k2 = 1.5k1

Gaussian IC
GIC + Equilateral NG, -125 < fNL < 435

(b) Equilateral non-Gaussianities
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Figure 14: Reduced matter bispectrum three-level predictions for different types of primordial non-
Gaussianities at redshift z = 1, assuming k1 = 0.01hMpc−1, k2 = 1.5k1 as a function of the angle θ
between k1 and k2. The solid line is the prediction for Gaussian initial conditions. The dashed line cor-
responds to the bounds explained in the image corresponding to the 95% confidence limits of the WMAP
survey [28].
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Using the fact that D is diagonal we can write the equation of motion in short- and long-wavelength
modes

0 = Dijφ
j
L −

1

2
W i

ΛM
i
jkφ

jφk = Dijφ
j
L −

1

2
W i

ΛM
i
jkφ

j
Lφ

k
L −W i

ΛM
i
jkφ

j
Sφ

k
L −

1

2
W i

ΛM
i
jkφ

j
Sφ

k
S . (76)

N -body experiments have shown that the short-wavelength modes φS are highly dependent on the long-
wavelength modes while the long-wavelength modes are only weakly dependent on the short-wavelength
modes [29]. For this reason we can treat the short-wavelength modes as a functional of the long-wavelength
modes φS [φL] and expand φS in a Taylor series around its value when φL = 0, i.e.,

φiS = φiS0
(τ) +

∫ τ

τin

dτ ′
∂φiS(τ)

∂φjL(τ ′)

∣∣∣∣
φL=0

φjL(τ ′) + . . . (77)

The first term denotes the short wavelength field for vanishing long-wavelength field. The second term
represents the first order correction for a nonzero long-wavelength field. Both φS0 and ∂φiS(τ)/∂φjL(τ ′) are
not predicted by effective field theory and should be obtained from N -body simulations. Note that the
second term does not have to be local. To first order we should think about these terms as the viscosity
in fluid dynamics.

Upon substituting the Taylor expansion in the equation of motion we obtain the effective equation of
motion,

0 =Dijφ
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τin

dτ ′
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∫ τ

τin

dτ ′
∂φkS(τ)

∂φlL(τ ′)
φlL(τ ′) + . . . (79)

We can interpret this equation as a set of effective interactions D̃, M̃ , Õ related by the equation

0 = D̃ijφ
j
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2
M̃ i
jkφ

j
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k
L −
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Õijklφ

j
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k
Lφ

l
L. (80)

We can treat this differential equation as in the standard perturbation theory discussion and find effective
approximations for the correlation functions.

Carroll et al. [9] have shown that the first effective correction to the equation of motion adds linear
term to the equation of motion,

D̃ = D + C(τ ′|k), (81)

while the interaction remains unaffected. Baumann et al. [4] and Carrasco et al. [8] have shown that this
corresponds to an imperfect fluid by which we can relate C to the speed of sound, the viscosity, and the
heat conductivity coefficients of the fluid

C(τ ′|k) =

(
ξδ ξθ

k2c2
s −k2 c

2
v
H

)
, (82)

where the parameters cs, cv, ξ
δ and ξθ should be obtained from small scale N -body simulations. For a

more sophisticated analysis of the corrections see Carroll et al. [9].

4 Probing primordial non-Gaussianities in the LSS

Primordial non-Gaussianities can significantly influence the statistics of the LSS matter density field.
However, as the matter in our universe largely consists of a not yet observed kind (dark matter), we
are unable to map the matter density field directly. Large-scale structure surveys generally survey the
galaxy distribution in our universe. In this section we study the effect of primordial non-Gaussianities on
bounded objects in which galaxies generally reside. We also shortly discuss their effect on voids.

Historically, the scientific community focused on the mass function of very massive structures [42].
Very massive virialized objects correspond to rare high peaks in the density field, which are sensitive
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Figure 15: A slice through an N -body simu-
lation at z = 0 for non-Gaussian initial con-
ditions of local type, with the same phase in-
formation, by Dalal et al. [13]. From top to
bottom fNL = −5000,−500, 0, 500, 5000. Each
slice is 375h−1Mpc wide and 80h−1Mpc high
and deep.

Figure 16: The halo mass function at z = 0 for
N -body simulations with non-Gaussian initial condi-
tions of local type with different fNL, by Dalal et al.
[13]. The top plane shows the mass function. The
bottom plane shows the ratio of the mass function
with respect to the Gaussian case.

to non-Gaussian contributions. For large empty voids we observe a similar effect. We shortly review
this effect in sections 4.1 and 4.2. Although these hypotheses are supported by N -body simulations,
the approach in practice suffers from low statistics and selection effects. With the prospect of the next
generation of LSS surveys observing and studying tens of thousands of clusters, it will become achievable
to measure higher order correlation functions, which we review in section 4.3. In particular, we discuss
the local biasing model in combination with the skewness and kurtosis of the galaxy distribution. We
subsequently discuss the recently discovered biasing scaling by Dalal et al. [13], which has been used to
constrain primordial non-Gaussianities.

4.1 Halo mass function

The number densities of bounded objects such as halos form a sensitive probe for primordial non-
Gaussianities. This can be observed in figure 15 where we plot a slice through an N -body simulation with
varying non-Gaussian initial conditions of the local type. Positive amplitude fNL leads to an enhanced
formation of virialized objects and smaller voids, whereas negative fNL leads to a suppressed formation
of bounded objects and larger voids than the Gaussian case. We can see this effect in more detail in halo
mass function dn(M)

d lnM denoting the density of halos with mass M (see figure 16). The halo mass function
is in particular sensitive to primordial non-Gaussianities for massive objects.

There exist several fitting formulas for the halo mass function for Gaussian initial conditions such
as the extended Press-Schechter formalism [6, 13, 14, 38]. We here briefly review the extended Press-
Schechter formalism, and discuss its extensions to understand the effect of primordial non-Gaussianities
on bounded objects and voids.

4.1.1 Gaussian initial conditions

In Eulerian perturbation theory, to linear order, the density field evolves as

δ(x, t) = D(t)δin(x), (83)

with δin(x) the linearly extrapolated initial density field and D(t) the growing mode normalized to unity
at t = t0 our current time. This is a valid approximation in the linear regime of structure formation, but

19



breaks down in the non-linear regime. For the non-linear regime, it is common to use the spherical or ellip-
tic collapse model. According to the spherical collapse model, regions in which the linear approximation
satisfies

δ(x, t) = D(t)δin(x) > δc ≈ 1.686 (84)

will have collapsed into bounded objects at time t. Under these approximations, the Press-Schechter
formalism approximates the number density of bounded objects. Hence it answers the questions: how
many bounded objects, on average, will a volume contain and what is the mass distributions of these
objects?

In the Press-Schechter formalism, the initial density field is generally smoothed on a scale R with
a window function W (x, R) normalized by

∫
W (x, R)d3x = 1 for all R. Formally, the density field is

convolved with the window function in real space

δ(x, R) =

∫
δin(x′)W (x + x′, R)d3x′, (85)

and multiplied with its Fourier transform in Fourier space

δ(k, R) = δin(k)W (k, R), (86)

where the latterW is the Fourier transform of the window function. In practice it is common to use window
functions which only depend on the product kR and write W (kR). Examples of window functions are
the top hat, Gaussian or so called sharp k-filter. The sharp k-filter will be used later on and is defined as

Wsk(kR) = Θ(1− kR), (87)

with Θ the Heaviside function. For the smoothed field we can define the variance as

σ2(R) = 〈δ2(x, R)〉 =
1

2π2

∫
Pin(k)W 2(kR)k2dk, (88)

where we have moved to Fourier space, used the definition of the initial power spectrum Pin, integrated
over a Dirac delta function and transformed to spherical coordinates. The smoothing can be related to
a mass scale, M = γf ρ̄R

3 with γf a constant depending on the window function. For the Gaussian filter
γf = (2π)3/2 and for the sharp k-filter γf = 6π2. We can use this relation to identify smoothed variables
σ(R) and δ(x, R) with the mass scale variables σM and δM (x) respectively.

Using the spherical collapse model, it is reasonable to identify the number density of halos with mass
M at time t with the number density of peaks in δM (x) with critical value δc(t) = δc/D(t). Bardeen et al.
[23] derived statistics for the distribution of peaks. This approximation has however a caveat since some
peaks become absorbed by another peak on a larger mass scale and should not be identified as a halo.
This is known as the cloud-in-could problem. Press and Schechter [38] avoided this problem by stating
that the probability for δM (x) > δc(t) is equal to the mass fraction contained in halos with mass greater
than M , i.e., the mass fraction contained in halos F at time t satisfies

F [> M, t] = P [δM (x) > δc(t)], (89)

with P the PDF of the initial density field. Geometrically we can imagine this as a barrier at hight δc(t)
which is lowered as time evolves, letting more and more regions collapse. However, as δc(t) > 0 for all t,
the Press-Schechter formalism states that only overdense regions end up in halos. This is unreasonable
as underdense regions can be enclosed by overdense regions. Press and Schechter compensated for this
caveat by introducing a fudge factor 2,

F [> M, t] = 2P [δM (x) > δc(t)]. (90)

Now all mass ends up in halos as δc(t) approaches 0. Given this fudge factor, the differential mass function
for Gaussian initial conditions reads

dn(M, t)

dM
=

ρ̄

M

∂F [> M, t]

∂M
=

√
2

π

ρ̄

M2
Exp

[
−δc(t)

2σ2
M

] ∣∣∣∣d lnσM
d lnM

∣∣∣∣ . (91)
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This is often written as

dn(M, t)

dM
=

ρ̄

M
f(ν)

∣∣∣∣ d ln ν

d lnM

∣∣∣∣ , (92)

with f(ν) =
√

2
πνe

−ν2/2 known as the multiplication factor and dimensionless parameter ν = δc(t)
σM

.

The fudge factor proposed by Press and Schechter was explained by Bond et al. [6], by their excursion
set theory. They studied δM (x) for a fixed position x as a function of mass scale M for a sharp k-filter
Wsk. For a so-called sharp k-filter Wsk, the density field

δM (x) =

∫
d3kW (kR)δin(k)eik·x =

∫
k<kc

δin(k)eik·x (93)

where kc = 1/R. In the limit R → ∞, the density goes to zero. For a Gaussian random field, δM (x)
performs a random walk as R decreases to 0 since the different Fourier modes of a Gaussian field are
independent. The question whether a mass element resides in a halo at time t can now be identified with
the probability for the random walk to cross the boundary δc(t) before that time. A detailed analysis of
the random walk yields the Press-Schechter halo mass function with the fudge factor 2. Window functions
other than the sharp k-filter give correlated walks for which the halo mass function cannot be analytically
evaluated this way. Such an analysis generally requires a Monte Carlo estimation. This formalism is
generally known as the extended Press-Schechter formalism.

The extended Press-Schechter formalism gives a halo mass function that roughly agrees with numerical
simulations. It however overpredicts the high-mass regime while underpredicting the low-mass regime.
The approximation can be improved by considering the elliptic collapse model. Unfortunately such a
model, even with a sharp-k filters, correspond to a moving barrier problem, i.e., δc(t) now also depends
on scale R. We are unable to handle moving boundary problems analytically and again have to perform
a Monte Carlo simulations [44].

4.1.2 Non-Gaussian initial conditions

Several methods have been pursued to generalize the extended Press-Schechter argument to non-Gaussian
initial conditions. The most naive way to generalize would be to replace the Gaussian PDF in the definition
of F by a non-Gaussian distribution function. Such an attempt faces however a few problems. In the first
place, the fudge factor will even for a sharp k-filter no longer be equal to two, as different k-modes of the
initial density field will be correlated. Secondly, the generalized halo mass function will suffer from the
same inaccuracies as the original model.

A less direct generalization has been proposed in which we acknowledge the inaccuracies of the original
Press-Schechter formalism and only use its general form, by using a Gaussian halo mass function and
multiplying it with the departure from the Gaussian case, i.e.,

nNG(M, t) =
d

dMFNG[> M ]
d

dMFG[> M ]
nG(M, t) =

fNG(ν)

fG(ν)
nG(M, t). (94)

This method can either be performed numerically or analytically. Numerically, we can take the Gaussian
halo mass function from an N -body simulation (for example Jenkins et al. [22]) and estimate the ratio
numerically using several non-Gaussian N -body simulations [13]. Analytically, Matarrese et al. [33]
(known as MVJ) approximated the non-Gaussian PDF with an Edgeworth expansion and evaluated the
ratio in terms of the skewness(

dn

d lnM

)
MV J

= 2
ρ̄

M
PG

δ∗
σM

[
1

6

δ3
∗
δc

∣∣∣∣ dS3,M

d lnM

∣∣∣∣+ δ∗

∣∣∣∣ dσM
d lnM

∣∣∣∣] , (95)

with δ∗ = δc√
1−S3,M δc/3

and S3,M =
〈δ3M 〉
σ4
M

.

We compare the numerical and analytic evaluations of the ratio with the halo mass function of a
N -body simulation in figure 17. We observe that both methods largely agree but overestimate the effect
of primordial non-Gaussianities.

21



1e+14 1e+15
M (h-1 Msun)

1.0

2.0

3.0

4.0

5.0

n N
G

(z
, M

) /
 n

G
(z

, M
)

our fit to sims
EPS
MVJ

fNL=+500

z=0

z=0.5

z=1

(a) The ratio between non-Gaussian and Gaussian
halo mass for positive fNL.

1e+14 1e+15
M (h-1 Msun)

0.0

0.2

0.4

0.6

0.8

1.0

n N
G

(z
, M

) /
 n

G
(z

, M
)

our fit to sims
EPS
MVJ

fNL=-500
z=0

z=0.5

z=1

(b) The ratio between non-Gaussian and Gaussian
halo mass for negative fNL.

Figure 17: The ratio of a non-Gaussian and Gaussian halo mass function as function of scale. The points
with error bars denote numerically estimated values. The solid line represents a fit trough the points.
The dotted lines represent numerical and analytical approximations. Analysis by Dalal et al. [13]

4.2 Void abundance

Primordial non-Gaussianities strongly influence the halo mass function of very massive halos. On the
other end of the mass distribution we observe in figure 15 that also the number density of large cosmic
voids is affected. Generally primordial non-Gaussianities of the local type with positive fNL lead to
smaller voids whereas non-Gaussianities with negative fNL lead to larger voids than the Gaussian case.
This is a useful observation, as voids have a small density perturbations and evolve linearly. The statistics
of the initial conditions should for this reason still reside in these voids. See the review by Desjaques and
Seljak [14] for an estimate based on analysis along the lines of the excursion set argument.

A joint estimate of primordial non-Gaussianity, using both halo and void abundances would be an
interesting development. There are however still several caveats in using voids abundance. There is exist
no unique theoretical definition of a void. Voids can be the region where the density field falls below
some threshold, where the eigenvalues of the Hessian of the gravitation potential are negative indicating
outflow of matter, or they can be identified by a division of the space by filaments and clusters such as
the watershed method [47], or Nexus+ [10]. For an overview of different void detection schemes see [12].
These voids detection methods generally do not agree among each other in N -body simulations. Given a
void region, it is non-trivial to define its size as it can assume irregular shapes. Finally, identifying voids
in high redshift surveys is difficult as voids contain a very limited number of galaxies which can be used
to trace them.

4.3 Halo biasing

We now concentrate on the spatial distribution of the galaxies in the large-scale structure. Galaxies only
form in dense regions, and are for that reason a biased tracer of the underlying density field. Hence in
order to measure primordial non-Gaussianities in the LSS by means of its spatial distribution, we need
to relate the statistics of the matter distribution δ to the galaxy distribution

δg(x) =
ng(x)− 〈ng(x)〉
〈ng(x)〉

(96)

smoothed on some scale. The relation between the matter and the galaxy distribution, known as the
biasing relation, is still not fully understood. We here shortly review the traditional local biasing model
and more recent developments suggesting an implicit dependence of galaxy formation on primordial non-
Gaussianities.
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4.3.1 The local biasing model and the galaxy bispectrum

Until recently, it was assumed that the perturbations in the galaxy distribution δg only depend on the
local behaviour of the density field, i.e., there exists a function f such that

δg(x) = f [δ(x)]. (97)

On large scales the biasing effect is assumed to be small. We can therefore approximate f by its Taylor
expansion in terms of biasing parameters bi [16],

δg(x) = f [δ(x)] = b1δ(x) +
1

2
b2δ(x)2 +

1

3!
b3δ(x)3 + . . . (98)

The correlation functions of the galaxy perturbation δg can be expressed in terms of correlation functions
of δ

〈δg(x1)δg(x2)〉 =b21〈δ(x1)δ(x2)〉+ b1b2
[
〈δ(x1)δ2(x2)〉+ 〈δ2(x1)δ(x2)〉

]
+ . . . (99)

〈δg(x1)δg(x2)δg(x3)〉 =b31〈δ(x1)δ(x2)δ(x3)〉+ b21b2
[
〈δ(x1)δ(x2)δ2(x3)〉+ 2 perm

]
+ . . . (100)

This implies that the galaxy power spectrum and bispectrum at tree-level are

Pg(k) =b21P (k), (101)

Bg(k1,k2,k3) =b31B(k1,k2,k3) + b21b2[P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)] (102)

with P and B the matter power spectrum and bispectrum. In the last expression we did not include the
connected trispectrum. The reduced galaxy bispectrum is defined as

Qg(k1,k2,k3) =
Bg(k1,k2,k3)

Pg(k1)Pg(k2) + Pg(k1)Pg(k3) + Pg(k2)Pg(k3)
=

1

b1
Q(k1,k2,k3) +

b2
b21
, (103)

with Q the reduced matter bispectrum possibly containing contributions coming from primordial non-
Gaussianities. By measuring the reduced galaxy bispectrum in different triangle configurations we should
be able to disentangle the biasing, gravitational instability and primordial source of the non-Gaussianity.
Current large-scale structure galaxy catalogue do not provide enough data to accurately measure the
galaxy bispectrum. The scientific community has for this reason mainly concentrated on the two-point
function. The next generation of high redshift surveys will probe tens of thousands of galaxies and
probably might enable us to estimate the three-point function. This would be a more direct probe to
primordial non-Gaussianities.

4.3.2 Skewness and kurtosis

Early large-scale structure surveys were unable to probe the bispectrum and trispectrum. The early
literature for this reason concentrates on the moments of the galaxy distribution. The pth order moment
is defined in terms of the density field of the galaxy distribution δg as

sp =
〈δpg(x)〉c
〈δ2
g(x)〉p/2

, (104)

where 〈. . . 〉c means the connected part of the correlation function [5]. The third-order and fourth-order
moments s3 and s4 are known as the skewness and kurtosis. The skewness is given in terms of the
bispectrum as

〈δ3
g(k)〉c =

∫
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
Bg(k1,k2,k3). (105)

For Gaussian initial conditions, Peebles [34] showed that to leading order

s3 =
34

7
σg, (106)
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with σ2
g = 〈δ2

g〉 in linear perturbation theory. A non-Gaussian component in the initial conditions and
non-linear biasing will lead to additional components in the skewness. Fry and Gaztanaga [16] showed
that, to leading order,

s3 = s
(0)
3 +

34

7
σg +

6b2
b1
σg, (107)

where s
(0)
3 is the skewness in the initial conditions and b1 and b2 are the bias parameters. This equation

can be derived from substituting equation (102) and (101) in equation (105) and equation (104). Note
that in this formula the first term corresponds to primordial non-Gaussianities, the second to gravitational
instability, and the third term to non-linear halo biasing. For higher order corrections the different sources
for non-Gaussianities in the galaxy modes mix and the effect cannot be written as a sum of the different
effects. Higher order moments such as the kurtosis can be approximated in a similar fashion from standard
perturbation theory. However, note that these results are derived under the assumption of the local biasing
model.

It is in general difficult to measure primordial non-Gaussianities from the skewness and kurtosis of the
LSS galaxy distribution, as they are two numbers resulting from complex gravitational collapse, non-linear
biasing and can differ for different types of primordial non-Gaussianities. Bispectrum analyses contain
more information, but require a very large galaxy catalogue. Such a catalogue might be achievable with
the next generation of large-scale structure surveys.

4.3.3 Bias scaling

Galaxy formation is an extremely complex non-linear process which is still not fully understood. Under
which circumstances in the matter density field do stars form? The local biasing model is a natural first
approximation. There is no fundamental reason why the galaxy perturbation should only depend on the
local value of the density perturbation. Their relation could be far more complex. To leading order in
the local biasing model, the galaxy or halo power spectrum is given by

Pg(k) = b21P(11)(k) (108)

which does not depend on primordial non-Gaussianities. However, simulations by Dalal et al. [13] and
later confirmed by Desjacques et al. [14], and Grossi et al. [19] show a scale-dependent correction to the
linear biasing model (see figure 18). The correction is often written as

Pg(k) = [b1 + ∆b1(k)]2P(11)(k), (109)

with the correction for local type primordial non-Gaussianities

∆b1(k) = 3fNL(b1 − 1)δc
ΩmH

2
0

k2T (k)D(z)
, (110)

where δc ≈ 1.68 is the linear extrapolated critical density for spherical collapse. We observe that ∆b1
increases with scale and decreases with time as the growth factor D(z) increases. The correction is
proportional to the amplitude of the local type primordial non-Gaussianities and vanishes for unbiased
distributions of galaxies.

There currently exist several arguments supporting the scaling of the bias for primordial non-Gaussian
fluctuations. Dalal et al. [13] originally argued that given the local model

Φ(x) = ΦG(x) + fNL
[
Φ2
G(x)− 〈Φ2

G(x)〉
]

(111)

the Laplacian of the gravitational potential is

∇2Φ = ∇2ΦG + 2fNL
[
ΦG∇2ΦG + |∇ΦG|2

]
. (112)

The density field is proportional to this expression. For peaks in the density field, which would lead to
halos and galaxy formation, the term −∇2ΦG dominates over |∇Φ|2. Neglecting the |∇Φ|2 term we get
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Figure 18: Matter-halo power spectrum in simula-
tions with primordial non-Gaussianities of the local
type for different amplitudes fNL, by Dalal et al. [13].

Figure 19: Bias scaling for different type of pri-
mordial non-Gaussianities, by Desjacques and
Seljak [14].

via the Poisson equation that δ ≈ δG[1+2fNLΦG] with δG the density field corresponding to the Gaussian
potential ΦG. During the evolution of the field, δ and δG grow like D(a) while ΦG decays like a, hence

δ ≈ δG
[
1 + 2fNLΦG

a

D(a)

]
. (113)

The enhanced or suppressed galaxy formation is due to the correlation of the Gaussian density δG and
potential ΦG which are related via the Poisson equation. For a discussion of the correlation between these
fields see Rossi [41]. Now consider a peak of hight δpk in the matter density field. In the absence of
primordial non-Gaussianities the galaxy density is bLδpk with bL the Lagrangian bias. For nonzero fNL
we have an extra contribution 2fNLΦGδpka/D(a). Spherical collapse theory predicts the collapse of peaks
into virialized objects when the linearly extrapolated density exceeds δc ≈ 1.68. Hence for peaks with the
critical density fluctuation δpk ≈ δc we get

δg = bL

[
δ + 2fNLΦGδc

a

D(a)

]
. (114)

By switching to the Eulerian bias b = 1 + bL, and writing ΦG in terms of δG, we obtain the relation (110).
This calculation should be seen as a crude estimate establishing the scaling of the biasing relation for
local type primordial non-Gaussianities. Slosar et al. [45] extended the analysis to more general settings
using a peak-background split.

All these methods rely on the transformation rule for local type non-Gaussianities and are difficult to
translate to generic non-Gaussianities. Other types of non-Gaussinities can however also lead to similar
scaling laws. See figure 19 for estimations using N -body simulations. Matarrese and Verde [32] and Taruya
et al. [46] showed that for local non-Gaussianities the 1-loop correction to the power spectrum leads to the
same scaling relations for large scales. This method can be extended to generic type non-Gaussianities.

5 Current constraints and future prospects

In the previous section we discussed the effect of primordial non-Gaussianities on the halo mass function,
void abundance and galaxy correlation functions. We estimated the behaviour of these observables and
compared them with N -body simulations. In order to measure or constrain primordial non-Gaussianities
we need to compare the estimates with large-scale structure surveys. The detection of primordial non-
Gaussianities in the large-scale structure is a rapidly evolving area. So far, several groups have been
able to constrain the non-Gaussianities by measuring the bias scaling in the LSS galaxy power spectrum,
including [17, 18, 40, 45]. Other LSS observables are still not robust enough to put reliable bounds on
primordial non-Gaussianities. The halo mass function is for example still too much affected by systematics
and selection effects. We here briefly discuss the results of Giannatonio et al. [18].
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Figure 20: Marginalized probability distributions for fNL versus Ωm and σ8, with contours at 68% and
95% confidence levels, by Giannatonio et al. [18].

Giannatonio et al. [18] estimate fNL for local type primordial non-Gaussianities by cross-correlating
several galaxy surveys amongst each other and with the WMAP cosmic microwave background map. In
their analysis they included for the CMB map the integrated Sachs-Wolf effect caused by the evolution
of the gravitational potential which generates red-shifts corrections for CMB photons. They in particu-
lar correlated the Two Micron All-Sky Survey (2MASS), the galaxy and quasar catalogue of the Slown
Digital Sky Survey (SDSS), the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample, the
High Energy Astronomy Observatory Program of the X-ray background (HEAO), and the NRAO VLA
Sky Survey radio-galaxy catalogue (NVSS). See figure 21 for the different power spectra of the cross-
correlations.

In general, large-scale structure surveys suffer from several kinds of contamination by systematic dis-
tortions which may significantly bias the primordial non-Gaussianity results. These systematics can be
caused by for example observational issues originating in the galaxy such as extinction by dust, or effects
caused by our atmosphere such as seeing and airmass. In order to take care of these contaminations,
Giannatonio et al. [18] divided the data in three subsets. A ‘näıve’ data set containing all the 26 corre-
lations, a ‘fair’ sample containing 25 correlations excluding the auto-correlations of the NVSS and QSO
data sets which are supposed to be less reliable, and a ‘conservative’ set containing only the most reliable
correlations. By means of a Markov Chain Monte Carlo algorithm, the cosmic parameters are estimated
(see figure 20). Note that the ‘näıve’ sample leads to a detection 31 < fNL < 64, while the ‘fair’ and
‘conservative’ subset lead to constraints −15 < fNL < 68, and −36 < fNL < 45 respectively at a 95%
confidence level. We observe that the result strongly depends on the chosen data set. It is for this reason
fair to say that the results probably do not imply a detection. However, they do bound the amplitude
of local type non-Gaussianities and do so in accordance with the Planck bound on local type primordial
non-Gaussianities.

Current bounds on primordial non-Gaussianities by the CMB observations of the Planck consortium are
still more stringent than current large-scale structure bounds. However, while current CMB surveys have
nearly reached the bound set by cosmic variance, probing primordial non-Gaussianities with large-scale
structure surveys is still a relatively new method with a lot of potential. The next generation of large-scale
structure missions such as the Dark Energy Survey, Supernova/Acceleration Probe and Large Synoptic
Survey Telescope will detect and study tens of thousands of clusters. This will greatly improve the ac-
curacy of the power spectrum analyses of the galaxy distribution. It will moreover enable us to perform
bispectrum analyses of the galaxy distribution. For an estimate of the constraining power of the next
generation of large-scale structure surveys see [17]. There are also several theoretical developments which
would help improve current bounds. In the first place, a better theoretical understanding of the halo
mass function and a better definition of voids might make halo and void abundances a competitive source
of data to probe primordial non-Gaussianities. Secondly, better halo and void identification algorithms
would allow for more reliable comparisons of theoretical studies and large N -body simulations. Finally,
note that the best estimate will likely come from a shared analysis using a range of observables sensitive
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to primordial non-Gaussianities. Methods to accurately weight multiple analyses should for this reason
be further developed.
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