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Abstract.
We present a general formalism for identifying the caustic structure of a dynamically evolving
mass distribution, in an arbitrary dimensional space. For the class of Hamiltonian fluids the
identification corresponds to the classification of singularities in Lagrangian catastrophe the-
ory. On the basis of this formalism we develop a theoretical framework for the dynamics of the
formation of the cosmic web, and specifically those aspects that characterize its unique nature:
its complex topological connectivity and multiscale spinal structure of sheetlike membranes,
elongated filaments and compact cluster nodes.

The present work represents a significant extension of the work by Arnol’d et al. [10], who
classified the caustics that develop in one- and two-dimensional systems that evolve according
to the Zel’dovich approximation. His seminal work established the defining role of emerging
singularities in the formation of nonlinear structures in the universe. At the transition from
the linear to nonlinear structure evolution, the first complex features emerge at locations
where different fluid elements cross to establish multistream regions. Involving a complex
folding of the 6-D sheetlike phase-space distribution, it manifests itself in the appearance of
infinite density caustic features. The classification and characterization of these mass element
foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of
the deformation tensor field.

In this study we introduce an alternative and transparent proof for Lagrangian catas-
trophe theory. This facilitates the derivation of the caustic conditions for general Lagrangian
fluids, with arbitrary dynamics, and even including dissipative terms and vorticity. Most
important in the present context is that it allows us to follow and describe the full three-
dimensional geometric and topological complexity of the purely gravitationally evolving non-
linear cosmic matter field. While generic and statistical results can be based on the eigenvalue
characteristics, one of our key findings is that of the significance of the eigenvector field of the
deformation field for outlining the entire spatial structure of the caustic skeleton emerging
from a primordial density field.

In this paper we explicitly consider the caustic conditions for the three-dimensional
Zel’dovich approximation, extending earlier work on those for one- and two-dimensional fluids
towards the full spatial richness of the cosmic web. In an accompanying publication, we apply
this towards a full three-dimensional study of caustics in the formation of the cosmic web and
evaluate in how far it manages to outline and identify the intricate skeletal features in the
corresponding N -body simulations.
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1 Introduction

Caustics are important features in the dynamics of fluids, marking the positions where fluid
elements cross and multi-stream regions form. The caustics can be associated to the regions
with infinite density, corresponding to locations where shell-crossing occurs or where we see
the formation of shocks. In the study presented, we concentrate specifically on the role of
caustics in the formation of the cosmic web. Notwithstanding this focus, the caustic conditions
and mathematical formalism that we have derived for this are of a far more generic nature,
whose validity is independent of the dynamics of the fluid described.

The cosmic web is the complex network of interconnected filaments and walls into which
galaxies and matter have aggregated on Megaparsec scales. It contains structures from a few
megaparsecs up to tens and even hundreds of megaparsecs of size. Its appearance has been
most dramatically illustrated by the maps of the nearby cosmos produced by large galaxy
redshift surveys such as the 2dFGRS, the SDSS, and the 2MASS redshift surveys [26, 42, 66],
as well as by recently produced maps of the galaxy distribution at larger cosmic depths such
as VIPERS [37]. The weblike spatial arrangement is marked by highly elongated filamentary
and flattened planar structures, connecting in dense compact cluster nodes surrounding large
near-empty void regions.

The Cosmic Web is one of the most striking examples of complex geometric patterns
found in nature, and certainly the largest in terms of size. According to the gravitational
instability scenario [55], cosmic structure grows from tiny primordial density and velocity
perturbations. Once the gravitational clustering process has progressed beyond the initial
linear growth phase, we see the emergence of complex patterns and structures in the density
field. As borne out by a large sequence of N-body computer experiments of cosmic structure
formation (e.g. [60, 65, 70]), web-like patterns in the overall cosmic matter distribution do
represent a universal but possibly transient phase in the gravitationally driven emergence and
evolution of cosmic structure (see e.g. [4, 22]). N-body calculations have shown that web-
like patterns defined by prominent anisotropic filamentary and planar features — and with
characteristic large underdense void regions — are a natural manifestation of the gravitational
cosmic structure formation process. The recognition of the Cosmic Web as a key aspect in the
emergence of structure in the Universe came with early analytical studies and approximations
concerning the emergence of structure out of a nearly featureless primordial Universe. In this
respect the Zel’dovich formalism [73] played a seminal role.

The emphasis on anisotropic collapse as agent for forming and shaping structure in the
Zel’dovich "pancake” picture [43, 73] was seen as the rival view to the purely hierarchical
clustering view of structure formation. The successful synthesis of both elements in the
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Cosmic Web theory of Bond et al. [14] appears to provide a succesful description of large
scale structure formation in ΛCDM cosmology. It stresses the dominance of filamentary
shaped features and emphasizes the intimate dynamical relationship between the filamentary
patterns and the compact dense clusters that stand out as the nodes within the cosmic matter
distribution [14, 24, 67]. It also indicates that a full understanding of its dynamical evolution
should clarify how the various emerging structural features connect up in the intricate network
of the cosmic web. To answer this question we need to turn to a full phase-space description
of the evolving matter distribution and mass flows.

The Zel’dovich formalism [73] already underlined the importance of a full phase-space
description for understanding cosmic structure formation, however, with the exception of a
few prominent studies [10], the wealthy information content of full 6-D phase-space escaped
attention. This changed with the publication of a number of recent publications [1, 30, 54,
58, 62] (for an early study on this observation see [20]). They realized that the morphology of
components in the evolving matter distribution is closely related to its multistream character
This realization is based on the recognition that the emergence of nonlinear structures occurs
at locations where different streams of the corresponding flow field cross each other.

Looking at the appearance of the evolving spatial mass distribution as a 3D phase
space sheet folding itself in 6D phase space, a connection is established between the structure
formation process and the morphological classification of the emerging structure. Based
on these recent advances and insights, in this study we discuss the role of caustics in the
formation of the cosmic web. The caustics mark the regions where non-linear gravitational
collapse starts to take place and the cosmic web begins to form. By tracing the caustics
during the formation of the cosmic web we obtain a skeleton of the current three-dimensional
large scale structure.

Caustics in Lagrangian fluids with Hamiltonian dynamics are classified by Lagrangian
catastrophe theory [6, 8, 47, 72]. These results were soon extended to fluids with generic
dynamics [16]. For the classification of caustics emerging in the context of a one- and
two-dimensional description of cosmic structure formation by the Zel’dovich approximation,
Arnol’d et al. [10] translated this into conditions on the displacement field. Following up
on this seminal work, Hidding et al. [39] analyzed the overall morphology and connectivity
of caustics that emerge in a displacement field described by the one- and two-dimensional
Zel’dovich approximation. The visual illustration of the emerging structure, for a field of ini-
tially Gaussian random density and potential fluctuations, revealed how the caustics spatially
outline the spine of the cosmic web. Feldbrugge et al. [31] elaborated this into an analytical
evaluation of the statistical properties of caustics, assuming a random Gaussian initial density
field.

In the current study, we give a novel proof of Lagrangian catastrophe theory and the
corresponding caustic conditions for three-dimensional Hamiltonian fluids. These conditions
are expressed in both the eigenvalue and the eigenvector fields of the deformation tensor.
Moreover, our scheme allows us to extend these caustic conditions to fluids with arbitrary
dynamics in a space of arbitrary dimension. This in particular allows us to consider dissipative
fluids for which the displacement field is not necessarily the gradient of a potential field.
Applied to the three-dimensional Zel’dovich approximation, these conditions on the initial
density field lead to a caustic skeleton of the cosmic web. In this skeleton the walls, filaments
and clusters of the large scale structure are directly related to the A3, A4, A5, D4 and D5

caustics of Lagrangian catastrophe theory. See figure 1 for an illustration of the caustic
skeleton of the Zel’dovich approximation and a dark matter N -body simulation. A detailed
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Figure 1: The log density field of a dark matter N -body simulation in a Einstein universe and
cusp (A3), swallowtail (A4) and butterfly (A5) elements of the caustic skeleton corresponding
to the lowest eigenvalue field. The red sheets represent the cusps (A3) singularities which
correspond to the walls or membranes of the cosmic web. The blue lines and the green points
are the swallowtail (A4) and butterfly (A5) singularities corresponding to the filaments and
clusters of the large scale structure.

analysis of the caustic skeleton of the Zel’dovich approximation and a comparison with a
N -body simulation is the subject of an accompanying paper [32].

It should be emphasized that the eigenvalue fields of the deformation tensor have, for a
long time, been successfully used in Lagrangian studies of the cosmic web [23, 50, 71]. In these
studies, the clusters, filaments and walls are related to the number of eigenvalues exceeding a
threshold. The here proposed caustic skeleton complements their work in that it include the
information of the eigenvector fields, which so far has been largely neglected.

The plan for the present paper starts with section 2, in which we give a concise description
of Lagrangian fluid dynamics. The formation of caustics and derivation of the shell-crossing
conditions is studied in section 3. These conditions are among the main results presented
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here. In section 4 we apply these shell-crossing conditions to the classification of catastrophes,
described in section 5, to derive the caustic conditions. Finally, in section 7 we describe the
dynamical framework resulting from the considerations above.

2 Lagrangian fluid dynamics

There exist multiple approaches to fluid dynamics. In the Eulerian approach, the evolution
of the smoothed density and velocity fields is analyzed. The equations of motion of Eulerian
fluids are relatively concise and give a reasonably accurate description of the mean flow in a
fluid element at a given location in the fluid.

One serious disadvantage of the Eulerian framework is that it does not directly relate
to the motion of the particles in the fluid. Because it basically restricts itself to the mean
motion in a fluid element, it does not facilitate an accurate description of the evolution of
multi-stream regions. More suited for following the complex dynamical evolution of fluid
elements, including the emergence of caustics, is the Lagrangiam approach to fluid dynamics.

In Lagrangian fluid dynamics, we assume every point in space to consist of a mass
element. These mass elements flow with the fluid. Their motion is described by a map
xt : L→ E, mapping the initial position q in the Lagrangian manifold L to the position xt(q)
of the mass element in the Eulerian manifold E at time t. In the context of Lagrangian fluid
dynamics, it is most convenient to describe the evolving fluid in terms of the displacement
map st defined by,

st(q) = xt(q)− q , (2.1)

for all q ∈ L. For the Zel’dovich approximation [73] of cosmic structure formation the dis-
placement field is given by

st(q) = −b+(t)∇qΨ(q) , (2.2)

with the growing mode b+ and the displacement potential Ψ. The displacement potential is
proportional to the linearly extrapolated gravitational potential to the current epoch φ0, i.e.

Ψ(q) =
2

3Ω0H2
0

φ0(q) , (2.3)

with H0 the current Hubble parameter and Ω0 the current total energy density. In this paper
we always assume the maps xt and st to be continuous and sufficiently differentiable. While
in the Lagrangian description a mass element has a constant mass, it may contract, expand,
deform and even rotate. This is described in terms of the deformation tensorM, the gradient
of the displacement field with respect to the Lagrangian coordinates of a mass element,

M =
∂st
∂q

=

M1,1 M2,1 M3,1

M1,2 M2,2 M3,2

M1,3 M2,3 M3,3

 . (2.4)

While mass elements in a Lagrangian fluid are characterized by a few fundamental quantities,
which characterize them and remain constant throughout their evolution, most physical prop-
erties are basically derived quantities. A good example and illustration of a derived quantity
is the density field. The density in a point x′ ∈ E is defined as the initial mass in the mass
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element times the ratio of the initial and final volume of the mass element. Formally, this is
expressed as a change of coordinates involving the Jacobian of the map xt,

ρ(x′, t) =
∑

q∈At(x′)

ρi(q)

∣∣∣∣∂xt(q)∂q

∣∣∣∣−1

=
∑

q∈At(x′)

ρi(q)

∣∣∣∣I +
∂st(q)

∂q

∣∣∣∣−1 (2.5)

=
∑

q∈At(x′)

ρi(q)

|1 + µt1(q)||1 + µt2(q)||1 + µt3(q)|
,

with At(x
′) the points q in Lagrangian space L which map to x′, i.e., At(x

′) = {q ∈ L|xt(q) =
x′}, ρi the initial density field and µti the eigenvalue fields of the deformation tensorM(q)1

The last equality in equation (2.6) applies to general deformation tensors, since the charac-
teristic polynomial of the deformation tensor can be expressed in terms of the eigenvalues

χ(λ) = det

[
∂st
∂q
− λI

]
= (µt1 − λ)(µt2 − λ)(µt3 − λ) , (2.6)

by which

det

[
I +

∂st
∂q

]
= χ(−1) = (1 + µt1)(1 + µt2)(1 + µt3) . (2.7)

By substituting derived quantities like density in the, often more familiar, Eulerian fluid
equations, we may obtain a closed set of differential equations for the Eulerian position xt or
the displacement map st.

Equation (2.5) applies to a fluid with three spatial dimensions. The arguments presented
in this paper straightforwardly generalize to a Lagrangian fluid with an arbitrary number of
spatial dimension. For simplicity, we will restrict explicit expressions to the 3-dimensional case
2. It is straightforward to generalize equation (2.5) to d-dimensional fluids in d-dimensional
space.

Of key importance is the implication of equation (2.5) that an infinite density occurs
when a mass element is turned inside out. More formally stated, as we will see in section 3,
an infinite density occurs when for at least one of the i = 1, . . . , d,

1 + µi = 0 . (2.8)

The regions, in which the mapping xt becomes degenerate and the density becomes infinite
are known as foldings, caustics or shocks. They mark important features in the Lagrangian
fluid and are the object of study in this paper. Note that for practical reasons in this paper
we will sometimes suppress the time index of the eigenvalue fields, i.e. µi = µti.

1Note that here we use the general convention to represent the deformation eigenvalue field, with µi(q) the
i-th eigenvalue of the deformation tensor,M(q). This differs from the usual convention in cosmology to use
the time-independent representation of the deformation field in the context of the Zel’dovich approximation.
Within this formalism, the eigenvalues λi(q) of the deformation field ψij = ∂2Ψ(q)/∂qi∂qj , are related to the
eigenvalues µi(q) via the linear relation µi(q, t) = −b+(t)λi(q), in which b+(t) is the growing mode growth
factor. See Appendix A for further details.

2Formally, it would be appropriate to describe the fluids as (d + 1)-dimensional fluids, a combination of
their embedding in a d-dimensional space along with their evolution along time dimension t.
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Throughout our study, we assume that the displacement map st is continuous and suf-
ficiently differentiable. The corresponding eigenvalues are the roots of the characteristic
polynomial of the matrixM = ∂st/∂q. Since the characteristic equation is a non-linear equa-
tion, in principle the eigenvalues could develop singularities and become non-differentiable.
However, it can be shown that the eigenvalues can be ordered such that they are continu-
ous. Furthermore the eigenvalues will be differentiable whenever the eigenvalues are distinct.
When two eigenvalues coincide, the eigenvalue fields may become non-differentiable.

2.1 Hamiltonian fluid dynamics

For fluids moving with no dissipation of energy, the Hamiltonian formalism may be applied.
Hamiltonian fluids have a potential velocity field

v = ∇φ (2.9)

with the velocity potential φ. The mass density ρ and the velocity potential serve as conjugate
variables for the Hamiltonian H, with the equations of motion

∂ρ

∂t
= +

δH
δφ

= −∇ · (ρv) ,

∂φ

∂t
= −δH

δρ
. (2.10)

A simple example of a Hamiltonian is

H =

∫
dx

(
1

2
ρ(∇φ)2 + e(ρ)

)
, (2.11)

where e(ρ) is the internal energy as a function of density ρ. The first equation of motion in
equation (2.10) is equivalent to the continuity equation, while the second equation implies
the Euler equation

∂v

∂t
+ v · ∇v = −1

ρ
∇p , (2.12)

in which p is the pressure of the fluid. For a thorough discussion of fluid mechanics we refer to
the seminal volumes of [34], [49], and [48]. For detailed and extensive treatments and analyses
of Hamiltonian mechanics and Hamiltonian fluids, we refer to the reviews and textbooks by
[7], [59], [53], and [9].

3 Shell-crossing conditions

The caustics mentioned above result from the folding of the fluid in phase space. At the
initial time, t = 0, the fluid has not yet evolved. The displacement map s is therefore the
zero map, i.e.,

s0(q) = 0 (3.1)

for all q ∈ L. The map x0(q) is one-to-one, i.e. each Eulerian coordinate x corresponds to one
Lagrangian position q. Throughout the entire volume, the fluid only contains single-stream
regions. As the fluid evolves and nonlinearities start to emerge, we see the development of
multi-stream regions in the fluid. At the boundary of a multi-stream region, the volume
of a mass element vanishes and its density – following eqn. (2.5) – becomes infinite. At
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q2

q1

qs

q′

q′′

C

T

x(qs)

(a) Lagrangian space L

x2

x1

xt(qs)

xt(q
′′)

xt(q
′)

xt(C)

x(qs)

(b) Eulerian space E

Figure 2: The shell-crossing process of a curve C in a Lagrangian map xt. The left panel
shows Lagrangian space, describing the initial positions of the fluid. The right panel shows
Eulerian space, describing the positions of the fluid at time t. The fluid undergoes shell-
crossing in point qs on the curve C (red) at time t. The neighboring points q′ and q′′ have
passed through the opposing segments of C. The Lagrangian mapping of the curve xt(C)
(red) develops a non-differentiable point in xt(qx), which is known as a caustic. The arrow T
(blue) is the tangent vector of the curve C in point qs.

such locations the map xt(q) attains a n-to-one character, with n an odd positive integer
(n = 3, 5, 7, . . .). It means that at any one Eulerian location x, streams from n different
Lagrangian positions cross.

The key question we address here is that of inferring the conditions under which a mass
element with Lagrangian coordinate q undergoes shell-crossing. Here we derive the necessary
and sufficient conditions for the process of shell-crossing to occur. These conditions are called
shell-crossing conditions. They are the foundation on the basis of which we infer – in section 4
– the related conditions on the displacement field for the occurrence of the various classes of
caustics. These are called the caustic conditions. We infer the caustic conditions for generic
as well as Hamiltonian fluid dynamics.

3.1 Shell-crossing condition: the derivation

A typical configuration resulting from the shell-crossing process – the name by which it is
usually indicated – is illustrated in figure 2. It focuses on points q = (q1, q2) that lie on a
smooth curve C in Lagrangian space L (fig. 2a). At time t, the points on the Lagrangian curve
C map to the variety xt(C) in Eulerian space E (fig. 2b). The fluid in point qs undergoes
shell-crossing at time t. The neighboring points q′ and q′′ have passed through the opposing
segments of C. As a result of this, the curve C develops a non-differentiable point in xt(qx),
which is known as a caustic.
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q
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L

qs

x(qs)

q′′

x(q′′)

q′

x(q′)

q

x

L

qs

x(qs)

q′′

x(q′′)

q′

x(q′)

q

x

L

qs

x(qs)

q′′

x(q′′)

q′

x(q′)

Figure 3: Folding of a one-dimensional fluid in phase space C. The three panels show the
time evolution of the Lagrangian submanifold L (red) of the fluid in phase space. We track
the evolution of two points (q′, x(q′)), (q′′, x(q′′)) forming a multi-stream region and mark the
point undergoing shell-crossing by (qs, x(qs)). Left panel: the fluid – early in its evolution –
consisting of a single-stream region. Middle panel: a fluid during the process of shell-crossing.
Right panel: a fluid consisting of a multi-stream region.

In a time sequence of three steps, figure 3 illustrates the dynamical process that is
underlying the formation of the caustic at xt(qs). The singularity at xt(qs) ∈ xt(C) forms as
the result of a folding process in phase space. We may appreciate the emerging structure when
assessing the fate of two neighboring points q′, q′′ ∈ C on both sides of qs. While the phase
space sheet xt(C) is folded, the points xt(q′) and xt(q′′) turn around while passing through
xt(qs). In figure 3 we observe how the initially single-stream phase space sheet (lefthand
panel) morphs into a configuration marked by shell-crossing as different mass elements q pile
up at the same Eulerian position xt(qs) (central panel). Subsequently, around xt(qs) we notice
the formation of a multi-stream region, with the presence of mass elements q′ having passed
into a region where mass elements from other Lagrangian locations q are to be found.

To infer the shell-crossing conditions, we investigate a curve C in Lagrangian space along
which we have points q that will find themselves incorporated in a singularity at Eulerian
position xs(qs). In the case of shell-crossing, points q near the Lagrangian location qs will
map onto the same Eulerian position x(qs). The key realization is that this occurs as points q
along a direction T tangential to C are all folded on to a single Eulerian position xs(qs). This
translates the question of the shell-crossing condition into one on the identity of a tangential
direction T (q) along which shell-crossing may or will occur. In other words, whether on a
particular curve C – or, more general, a manifold M – there are points q where along one
or more tangential directions T (q) to that curve or manifold shell-crossing may or will take
place.

Zooming in on two points q′ and q′′ in the vicinity of the singularity point qs, we see that
as a result of the folding process the ratio of the distances of the two points in the Lagrangian
and Eulerian manifold, must go to zero in the limit that we zoom in on points q′ and q′′ along
the Lagrangian curve C at an infinitesimal distance from qs, i.e.

∆x

|∆q|
=
‖xt(q′)− xt(q′′)‖
‖q′ − q′′‖

→ 0 q′, q′′ → qs . (3.2)

The direct implication of this is, following equation (2.5), that the density in a caustic is
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infinite: the volume of the mass element associated to qs vanishes at time t. In essence
it informs us that during shell crossing the points q near Lagrangian location qs, along the
tangential direction T to the Lagrangian curve C, map onto the same Eulerian position x(qs).
This means that the norm of the directional derivative of xt along the tangential direction
vanishes. In other words, along the non-zero tangent vector T along C,∥∥∥∥∂xt∂q

T

∥∥∥∥ = 0 , (3.3)

where ∂xt/∂q is the Jacobian of xt evaluated in qs (see figure 2a). This is equivalent to
requiring that

∂xt
∂q

T = 0 . (3.4)

In terms of the displacement map st, this condition can be expressed as

T +
∂st
∂q

T = 0 , (3.5)

with the Jacobian ∂st
∂q also evaluated in qs

3. Subsequently consider the eigenvalues µi and
eigenvectors vi of the deformation tensorM = ∂st

∂q , defined by

Mvi = µivi . (3.6)

We can construct the diagonal matrixMd = diag(µ1, . . . , µd) and the eigenvector matrix V =
(v1, . . . , vd). In three dimensions, with the eigenvalues µi and eigenvectors vi = (vi,1, vi,2, vi,3),
the diagonal matrixMd and eigenvector matrix V are given by

Md =

 µ1 0 0
0 µ2 0
0 0 µ3

 , V =

 v1,1 v2,1 v3,1
v1,2 v2,2 v3,2
v1,3 v2,3 v3,3

 . (3.7)

In terms of V andMd, condition (3.5) reduces to

0 = (I +M)VV−1T = V(I +Md)V−1T (3.8)

since V is always invertible4, using the identity

MV =M(v1, . . . , vd) = (Mv1, . . . ,Mvd) = (µ1v1, . . . µdvd) = VMd . (3.9)

We thus obtain the condition
(I +Md)V−1T = 0 , (3.10)

which holds for general deformation tensors and does not rely on whether the flow is potential
(the deformation tensor is not assumed to be diagonalizable). Note that the rows of V−1
consist of the dual vectors {v∗i } of the eigenvectors {vi}, defined by vi · v∗j = δij for all i and
j. Explicitly, this means that V−1 in three dimensions is given by

V−1 =

 v∗1,1 v
∗
1,2 v

∗
1,3

v∗2,1 v
∗
2,2 v

∗
2,3

v∗3,1 v
∗
3,2 v

∗
3,3

 , (3.11)

3Unless mentioned otherwise, we will assume all Jacobians to be evaluated in qs.
4That is to say, the eigenvectors can always be chosen to be linearly independent.
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with v∗i = (v∗i,1, v
∗
i,2, v

∗
i,3). The product V−1T is the vector composed out of the inner product

of these dual vectors with the tangent vector T , so that in three dimensions equation (3.10)
reduces to  (1 + µ1)v

∗
1 · T

(1 + µ2)v
∗
2 · T

(1 + µ3)v
∗
3 · T

 = 0 . (3.12)

This represents the proof for the shell-crossing condition for one-dimensional subman-
ifolds. It states the condition for the tangential direction T along which Lagrangian points
get folded into an Eulerian singularity point. The obtained condition is a telling expression
for the central role of both the deformation eigenvalues and eigenvectors in determining the
occurrence of a singularity.

3.2 Shell-crossing condition: theorems

Following the proof outlined in the previous subsection 3.1, we arrive at the following two
theorems stipulating the conditions for the formation of singularities by curves C and arbitrary
manifolds M in Lagrangian space L,

Theorem: 1 A smooth curve C ⊂ L forms a singularity under the mapping xt in the
point xt(qs) ∈ xt(C) ⊂ E if and only if

(1 + µit(qs))v
∗
it(qs) · T = 0 (3.13)

for all i, with T a nonzero tangent vector of C in qs.

For fluids with Hamiltonian dynamics (see sect 2.1) the Jacobian ∂st/∂q is symmetric. The
eigenvalues are real-valued and the eigenvectors of can be taken to be orthonormal. The dual
vectors of such a set of eigenvectors coincide with the eigenvectors, i.e. v∗i = vi.

It is important to note that the derived caustic conditions are general, and their validity
independent of the dynamics of the fluid. At no point in our argument, we have made the
assumption that the displacement field has to be a potential field. That is, more concretely, we
have not based our derivation on the assumption that the deformation tensor is diagonazable.
For the intention to be able to apply the caustic formalism to general fluid dynamics this
is critically important: fluids with non-Hamiltonian dynamics may have a Jacobian ∂st/∂q
with a non-vanishing anti-symmetric part. This implies fields of complex-valued eigenvalues,
and a set of linearly independent (but not necessarily orthonormal) eigenvectors. Physically,
it means that the fluid flow may also include vorticity components.

A similar argument holds for higher dimensional submanifolds of L, e.g., sheets and
volumes. These manifolds can be n-dimensional, with n = 1, . . . , 3 for three-dimensional
fluids. Given an arbitrary manifold M ⊂ L we can consider all curves C ⊂ M passing
through the point qs ∈M . The variety xt(M) contains a singularity at xt(qs) if and only if at
least one such curve C ⊂M gets folded under the map xt. Hence for an arbitrary submanifold

– 10 –



M , we should consider the one-dimensional shell-crossing condition for all tangent vectors T
in the vector space TqsM of all tangential vectors to the manifoldM in qs ∈M 5. This proves
the general shell-crossing condition:

Theorem: 2 A manifold M ⊂ L forms a singularity under the mapping xt in the point
xt(qs) ∈ xt(M) ⊂ E at time t if and only if there exists at least one nonzero tangent
vector T ∈ TqsM satisfying

(1 + µit(qs))v
∗
it(qs) · T = 0 (3.14)

for all i.

3.3 Shell-crossing conditions: significance

The shell-crossing conditions, as expressed in the two theorems above, are in agreement with
our observation in section 2. That is, the conditions express the fact that caustics satisfy the
sufficient and necessary condition 1 + µi = 0 for at least one i.

This conclusion follows from the observation that if indeed at least for one i we have that
1+µi = 0, we can always choose the vector T orthogonal to the span of eigenvectors {vj |j 6= i}.
For example, for the three-dimensional situation: if 1 +µ1 = 0, we may chose the vector T to
be orthogonal to the plane defined by the eigenvectors v2 and v3. Along the direction of T we
see the Lagrangian points q end up in a singularity in the Eulerian location x(qs). Overall,
the eigenvalue condition 1+µi = 0 defines a two-dimensional sheet in Lagrangian space. This
sheet forms a singularity, containing points q that function as singularity points. If, however,
both 1+µ1 = 0 and 1+µ2 = 0, then T will be a vector orthogonal to the eigenvector v3. The
eigenvalue conditions define a line through three-dimensional Lagrangian space, the points q
along which are singularity points. Conversely, if 1 + µi 6= 0 for all i, then there does not
exist a T satisfying the general shell-crossing condition.

3.4 Shell-crossing conditions: coordinate transformation

The shell-crossing conditions are manifestly independent of coordinate choices. However,
the eigenvalue and eigenvector fields generally do depend on the choice of coordinates. By
themselves, they do therefore not provide valid descriptions of the dynamics of the fluid.
Suppose the displacement field can be written as s = ∇ψ for some potential ψ. The Hessian
Hx of ψ,

Hij =
∂2ψ

∂xi∂xj
, (3.15)

transforms non-trivially under the local coordinate transformation x→ X(x) i.e.

H → H̃ = JTHJ + JT∇(J)∇ψ , (3.16)
5TqsM is the vector space of all tangential vectors to the manifold M in qs ∈M .
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with J the Jacobian between the coordinate systems X and x,

Jij =
∂Xi

∂xj
. (3.17)

From this we immediately infer that the eigenvalue field and eigenvector fields are invariant
if the transformation is orthogonal and global, i.e. if JT = J−1 and ∇(J) = 0. As may be
expected, these transformations include rotations and translations.

4 Caustic conditions

In section 3, we inferred the general condition for shell-crossing. The condition establishes the
relation between the eigenvalue and eigenvector fields of the deformation tensor in Lagrangian
space, and the Lagrangian regions that get incorporated in features of infinite density in
Eulerian space. Moreover, it allows us to establish the identity of the resulting singularity in
Eulerian space. The stable singularities that may emerge in generic fluids or in Hamiltonian
fluids, can be classified in two series, theAk andDk series 6. The shell-crossing conditions state
that a necessary and sufficient condition for the generation of caustics is that 1+µi = 0 for at
least one i. The A-family of caustics are the ones for which this condition holds for only one
eigenvalue. Caustics for which two eigenvalues simultaneously satisfy this condition belong
to the D-family. In three-dimensional fluids, the case in which all eigenvalues simultaneously
satisfy this condition is non-degenerate. They belong to the E-family. However, we will not
discuss them in the context of the present paper. In section 5, we will describe these series
of caustics in more detail.

While already using the terminology of the Ak and Dk classification of singularities, the
purpose of the caustic conditions inferred in this section is precisely to establish the foundation
on which to base this classification. Along with a detailed description of the classification,
this will be the task of next section 5 by connecting the caustic conditions to the classification
of stable singularities.

In this section we restrict ourselves to the three-dimensional situation. Within 3-D space
we seek to identify and quantify the Lagrangian regions that get folded into Ak or Dk singu-
larities. As one may readily infer from the shell-crosssing conditions, this is determined by
the spatial characteristics of the deformation tensor eigenvalue and eigenvector fields in La-
grangian space. The conditions that are inferred from this analysis for caustics in Lagrangian
fluids are called the caustic conditions.

With the purpose to provide a guide that evokes a visual intuition for the connection
between the structure and geometry of the eigenvalue fields and the formation of the various
singularities, in particular those of the A-family, we include figure 4. It shows a contour
map representing the typical structure of the eigenvalue field µi. This field corresponds to a
two-dimensional Gaussian random density field. For reasons of convenience, we have assumed
higher eigenvalues to correspond to earlier collapse, and negative ones to no collapse (in other
words, we have mirrored µi). The geometry and topology of the eigenvalue landscape is
decisive for the occurrence of singularities. This may already be inferred from the positions
of different A-family singularity points and varieties, whose positions are indicated on the
contour map.

6The classification ultimately has its origin in the classification of Coxeter groups
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Figure 4: Eigenvalue field and singularity points. Top lefthand frame: the contour map
illustrates the typical structure of the eigenvalue field corresponding to a 2-D Gaussian random
density field. Indicated are the positions of different A-family singularity points and varieties.
In particular noteworthy is the run of the A3 line, which defines the ridge along which we
may identify a range of A singularities. One may keenly appreciate how the identity of the
various singularities is determined by the specific geometric character of the eigenvalue field
µ(q), as expressed in its gradient ∇µ(q) and higher order gradients. Bottom lefthand frame:
the panel depicts the run of the eigenvalue field along the A3 curve (in the contour map of
top lefthand frame). Note the location of the A±3 points and A4 points on the extrema of the
curve. Righthand panels: the three panels show the evolution, in Eulerian space, of the A3

line, according to the linear Lagrangian Zel’dovich approximation (Zel’dovich 1970). Note
the appearance of the corresponding caustics and the relation between the geometry of the
A3 line in Eulerian space and the A±3 and A4 points.
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The landscape defined by the eigenvalue contours is varied, characterized by several
peaks, connected by ridges with lower µi values. These, in turn, are connected to valleys
in which µi attains negative values that will prevent collapse – along the direction of the
eigenvector vi – of the corresponding mass elements at any time. From the density relation
(eqn. (2.6)), we know that the region of space that has undergone collapse before the current
epoch (i.e. attained an infinite density) is the superlevel set of the eigenvalue field defined by
the current value µti. For each time t, the positive value contours correspond to the A2(t)
fold sheets. Collapse occurs first at the maxima in the field. These mark the birth of new
features, and are designated by the label of A+

3 points. Evidently, the steepness of the hill
around these maxima, i.e. the gradient ∇µi(q), will determine how and which mass elements
around the hill will follow in outlining the emerging feature around the A+

3 points.
In particular noteworthy is the run of the A3 line. The key significance of the A3 curve

is evident from the observation that all A-family singularities are aligned along the ridge.
In two-dimensional space, the A3 curves delineate the points where the eigenvalues µi are
maximal along the direction of the corresponding local eigenvector. At these points, along
the eigenvector direction, the gradient of the eigenvalues is zero, i.e. they are the points where
the eigenvector n is perpendicular to the local gradient of ∇µi of the eigenvalue field. Below,
in section 4.1.3, we will see that this follows directly from the shell-crossing conditions that
were derived in the previous section. Because of this there is a line-up and accumulation of
neighbouring mass elements that simultaneously pass through the singularity. When mapped
to Eulerian space, this evokes the formation of an A3 cusp.

To illustrate the connection between A3 curves and the various singularities even more
strongly, the bottom lefthand panel depicts the run of the eigenvalue field along the A3 curve.
In particular noteworthy is the location of the A±3 points and A4 points on the extrema of
the curve. A prominent aspect of this is the presence of the A−3 points at saddle junctions in
the eigenvalue field. These are topologically the most interesting locations, as they evoke the
merging of separate fold sheets into a single structure. In other words, they are the points
where the topological structure of the field undergoes a transition and where the connectivity
of the emerging structural features is established. To establish this even more strongly, the
three righthand panels of figure 4 represent a time sequence of the evolving structure along
the A3 line as it is mapped to its appearance in Eulerian space. The evolution follows the
linear Lagrangian Zel’dovich approximation (see [73] and appendix A). We may note the
appearance and merging of the corresponding caustics.

In all, one may keenly appreciate how the identity of the various singularities is deter-
mined by the specific geometric character of the eigenvalue field µi(q), as expressed in its
gradient ∇µi(q) and higher order gradients. In the following subsections, we will systemati-
cally inventorize the families of singularities on the basis of the shell-crossing conditions that
we inferred before, and observe the connection between the singularities and the geometry of
the eigenvalue field.

4.1 The A family

The A family of caustics form when

1 + µi = 0 ,

1 + µk 6= 0 for k 6= i , (4.1)

for some i. In other words, the caustics correspond to one eigenvalue field. In this case, the
eigenvector fields {vi} and their dual vector fields {v∗i } are linearly independent. In addition,
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we may assume the eigenvalue fields to be sufficiently differentiable.
In total, we may identify 5 different A classes. These run from the trivial A1 class,

corresponding to the points that never form caustics, to the highest dimensional A singularity
class, the A5 butterfly caustics. The A family includes the sheetlike A2 fold singularities,
the curvelike A3 cusp singularities, the A4 swallowtail singularities and the A5 butterfly
singularity.

4.1.1 The trivial A1 class

The A1 class labels the points which never form caustics.
According to the shell-crossing condition, qs will form a singularity at time t if and only

if there exists a nonzero tangent vector T ∈ TqsL for which

(1 + µi(qs))v
∗
i (qs) · T = 0 (4.2)

for all i. The point qs will not satisfy this condition if 1 + µi(qs) 6= 0 for all i since the three
dual vectors {v∗i } span the tangent space TqsL.

From the shell-crossing condition we therefore conclude that the three-dimensional variety
A1,

A1 = {q ∈ L|1 + µti(q) 6= 0 for all i and t} , (4.3)

consists of the points never forming caustics. In this respect we should note that the displace-
ment map at the initial time is the zero map, so that the eigenvalues at the initial time are
equal to zero, i.e. µ0i(q) = 0 for all q ∈ L. Since the eigenvalues are continuous function of
time, the requirement for a point q to belong to A1 is equivalent to µti(q) > −1.

4.1.2 The A2 caustics

Based on the discussion above, we may conclude that for a given i, i = 1 . . . 3, at time t the
points

Ai
2(t) = {q ∈ L|1 + µti(q) = 0} (4.4)

form a singularity. For three-dimensional fluids, the set A2(t) forms a two-dimensional sheet,
sweeping through space as the fluid evolves. These singularities can be associated to the A2

fold singularity class.

From this, we conclude that the set of points which form a A2 fold singularity at a time
t ∈ [0,∞) is given by

Ai
2 = {q ∈ L|1 + µti(q) = 0 for some t} . (4.5)

4.1.3 The A3 caustics

Following up on the folding of the fluid to the Ai
2 singularity, the Ai

2 manifold itself may
actually be folded into a more complex configuration. The result is a so-called A3 singularity.
To guide understanding in the emergence of cusps we may refer to the eigenvalue contour
map of figure 5.

To infer the identity of the Ai
3 caustic, we restrict the criterion for shell-crossing to points

on the Ai
2 manifold. In other words, we look for points qs on the surface of the sheetlike variety

Ai
2(t) that fulfill the criterion for shell-crossing.
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Figure 5: The formation of a cusp (A3) singularity in a Lagrangian map xt. The left panel
shows Lagrangian space, describing the initial positions of the fluid. The right panel shows
Eulerian space, describing the positions of the fluid at time t. The fluid undergoes shell-
crossing along the fold Ai

2(t) (red) at time t. The fold gets mapped under the Lagrangian
map to xt(A2) (red), which is folded into a cusp in the point xt(qs) corresponding to qs. The
cusp forms if and only if the normal n of Ai

2(t) is orthogonal to the eigenvector field vi in qs.
Over time, the cusp traces out the curve Ai (blue) which is mapped to xt(Ai

3) (blue).

A point qs ∈ Ai
2(t) forms a singularity if there exists a nonzero tangent vector T, T ∈

TqsA
i
2(t), orthogonal to the span{v∗j |j 6= i}. This condition is satisfied if and only if the

tangent vector T is parallel to vi. This is equivalent to the condition that vi is orthogonal to
the normal n = ∇µti of the manifold Ai

2(t) in the point qs. Explicitly, this means that the
inner product of n with vi is equal to 0,

µti,i ≡ vi · ∇µti = 0 . (4.6)

The points q forming a cusp at time t therefore represent the one-dimensional variety defined
by

Ai
3(t) = {q ∈ L|q ∈ Ai

2(t) ∧ µti,i(q) = 0} . (4.7)

Extrapolating this to the set of all points q that at some time t ∈ [0,∞) have belonged to or
will be incorporated in a cusp singularity defines a two-dimensional variety

Ai
3 = {q ∈ L|q ∈ Ai

2(t) ∧ µti,i(q) = 0 for some t} , (4.8)

which is the assembly of all Ai
3(t) over the time interval t ∈ [0,∞).

4.1.4 The A±3 points

The topology of the sheetlike Ai
2(t) variety changes as a function of time. These topological

changes occur at critical points of the corresponding eigenvalue field µti. It is at these points
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Figure 6: The creation/annihilation of a fold (A2) sheet in a A+
3 point. The upper three

panels show the unfolding of a A+
3 singularity in Lagrangian space. The lower three panels

show the corresponding unfolding in Eulerian space. The two panels on the left show the
cusp (A3) plane on which the cusps form. The middle panels show the appearance of a A+

3

singularity in which a fold sheet is formed/removed. The right panels show the resulting fold
(A2) sheet. The fold sheet gets folded into a cusp (A3) curve (red). This configuration is
known as the Zel’dovich pancake (Zel’dovich 1970).

Figure 7: The merger/splitting of a fold (A2) sheet in a A−3 point. The upper three panels
show the unfolding of a A−3 singularity in Lagrangian space. The lower three panels show the
corresponding unfolding in Eulerian space. The two panels on the left show two fold (A2)
sheets, two cusp (A3) curves (red) and the cusp (A3) plane on which the cusps form. The
middle panels show the merger/splitting of the two fold (A2) sheets in a A−3 singularity. The
right panels show the resulting merged fold (A2) sheet. This configuration is known as the
Kissing Lips.
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Figure 8: The merger/splitting of a fold (A2) sheet in a A−−3 point. The upper three panels
show the unfolding of a A−−3 singularity in Lagrangian space. The lower three panels show
the corresponding unfolding in Eulerian space. The two panels on the left show two fold
(A2) sheets, and the cusp (A3) plane on which the cusps form. The middle panels show the
merger/splitting of the two fold (A2) sheets in a A−−3 singularity. The right panels show the
resulting merged fold (A2) sheet with the corresponding cusp (A3) curve.

where in Eulerian space we see the emergence of new features, the disappearance of features
and/or the merging of features. The critical points are classified as cusp singularities.

At minima of the µi field, a feature gets created. At maxima, a feature gets annihilated.
Particularly interesting points are the saddle points. In three-dimensional space, there are
two classes of saddles in the eigenvalue field µti. The index 1 saddles have a Hessian signature
(−−+), with 1 positive eigenvalue, while the index 2 saddles have a signature (−+ +).

Based on their impact on caustic structure, Arnol’d used a slightly different classificiation
scheme, in which the distinguished between A++

3 , A+−
3 and A−−3 points [8]. The A++

3 point
are identified with the minima7, while the A+−

3 points are the saddle points for which the
A3 sheet intersects the two disjoint A2 sheets. This is illustrated in the upper left panel in
figure 7. The additional A−−3 points correspond to saddle points for which the A3 sheet does
not intersect the disjoint A2 sheets. Because this concerns a non-generic situation, we do not
treat it here. Also note that higher dimensional fluids will have additional A3 points.

In the context of this paper we therefore use a slightly shorter notation for the maxima,
7Note that in Arnol’d’s notation, related to the Zel’dovich formalism (see appendix A), these are the

maxima of the eigenvalue field
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Figure 9: The formation of a swallowtail (A4) singularity in a Lagrangian map xt. The left
panel shows the Lagrangian space describing the initial positions of the fluid. The right panel
shows the Eulerian space describing the positions of the fluid at time t. The fluid undergoes
shell-crossing along Ai

2(t) (red) at time t. The fold gets mapped in Eulerian space, under the
Lagrangian map, to xt(A2) (red), which is folded into a cusp in the point xt(qs) corresponding
to qs. The cusp forms if and only if the normal n of Ai

2(t) is orthogonal to the eigenvector
field vi in qs. Over time, in Lagrangian space the cusp traces out the curve Ai (blue) which
in Eulerian space is mapped to xt(Ai

3) (blue). Since the cusp (Ai
3) curve is tangential to the

fold (A2) curve in qs, the cusp curve xt(Ai
3) forms a swallowtail (A4) singularity. Over time,

the swallowtail traces out Ai
4 (green), which in Eulerian space is mapped into xt(Ai

4) (green).

minima and saddles, classifying them as the cusp singularities A+
3 an A−3 ,

Ai+
3 = {q ∈ L|q ∈ Ai

2(t) ∧ µti(q) max-/minimum of µti at some time t} ,
Ai−

3 = {q ∈ L|q ∈ Ai
2(t) ∧ q saddle point of µti at some time t}. (4.9)

Note that in this scheme, the saddle points with index 1 and 2 belong to the same singularity
class Ai−

3 . For an illustration of the A+
3 and A−3 singularities, we refer to figures 6 and 7.

From the caustics conditions we may directly infer that the Ai±
3 points are located on the Ai

3

variety.

4.1.5 The A4 caustics

In Eulerian space the Ai
3(t) variety gets folded in points associated with A4 swallowtail sin-

gularities.
The identity of the points defining the variety Ai

4(t) can be inferred by the application
of the general shell-crossing condition (eqn. (3.14)) to the point set defining the Ai

3(t) variety
(see figure 9). On the basis of this, the Ai

4 identity is defined as

Ai
4(t) = {q ∈ L|q ∈ Ai

3(t) ∧ µti,ii(q) = 0}, (4.10)
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Figure 10: The creation/annihilation of a swallowtail (A4) singularity in a A+
4 point. The

upper three panels show the unfolding of a A+
4 singularity in Lagrangian space. The lower

three panels show the corresponding unfolding in Eulerian space. The two panels on the left
show a fold (A2) sheet. The middle panels show a A+

4 point on the fold (A2) sheet. The
A+

4 point leads to the creation/annihilation of two swallowtail (A4) singularities. The right
panels show the resulting cusp (A3) curves and swallowtail (A4) singularities.

Figure 11: The merger/splitting of a cusp (A3) curve in a A−4 point. The upper three
panels show the unfolding of a A−4 singularity in Lagrangian space. The lower three panels
show the corresponding unfolding in Eulerian space. The two panels on the left show a fold
(A2) sheet, cusp (A3) curves and swallowtail (A4) singularities. The middle panels show the
merger/splitting of the cusp (A3) curves in a A−4 point. The right panels show the resulting
fold (A2) sheet and cusp (A3) curves singularities.
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with µti,ii(q) the inner product of the normal n = ∇µti,i with the eigenvector vi,

µti,ii ≡ vi · ∇µti,i . (4.11)

Integrated over time, the points on the varieties Ai
4(t) trace out the 1-dimensional variety Ai

4,
i.e. the 1D line Ai

4 is the set of all points Ai
4(t) over the time interval t ∈ [0,∞),

Ai
4 = {q ∈ L|q ∈ Ai

3(t) ∧ µti,ii(q) = 0 for some t} . (4.12)

4.1.6 The A±4 points

Also the topology of the variety Ai
3(t) changes as a function of time. To this end, we identify

the critical points of the field µi,i,

µti,i ≡ vi · ∇µti . (4.13)

Constraining the location of these singularities to the one-dimensional curvelike variety Ai
3(t),

and thus implicitly also to the two-dimensional membrane of the varietyAi
2(t), theseA

±
4 points

mark the locations at which topological changes occur. They represent the sites at which we
see the birth of new singularities in Eulerian space, or the annihilation of and/or merging of
such features. These singularities are classified as swallowtail singularities.

The birth or death of features on Ai
3(t) takes place at maxima and minima of µti,i, and

is identified with Ai+
4 singularities. The merging or splitting of features happens at the saddle

points of the same field µti,i. The latter mark the Ai−
4 singularities,

Ai+
4 = {q ∈ L|q ∈ Ai

3(t), µti,i(q) max-/minimum of µti,i|Ai
2(t)

for some t},

Ai−
4 = {q ∈ L|q ∈ Ai

3(t) saddle point of µti,i|Ai
2(t)

for some t}. (4.14)

The A±4 critical points are constrained to lie on the curvelike variety Ai
2(t). Their identity

is therefore determined by the interplay between the geometric properties of two entities. One
of these is the geometry of the field µti,i, the other that of the geometry of the curvelike variety
Ai

3(t). For illustrations of the A
+
4 and A−4 singularities we refer to figure 10 and 11.

From the caustic conditions – as expressed in eqn. (4.10) – we may also immediately
observe that the Ai±

4 points belong to the Ai
4 variety. In fact, this also represents a condition

on the topology of the field µti,i and that of the Ai
2(t) variety.

4.1.7 The A5 caustics

Finally, also the swallowtail curves Ai
4 curve get folded in Eulerian space. It leads to the

emergence of so-called butterfly singularities, or A5 singularities. Following the same reason-
ing as for the Ai

3 and Ai
4 varieties, we may infer from the general shell-crossing condition that

the Ai
4 curve gets folded in the points,

Ai
5 = {q ∈ L|q ∈ Ai

4(t) and µti,iii = 0 for some time t}. (4.15)

Figure 12 shows an illustration of a A5 singularity.
The butterfly singularity is the highest dimensional singularity that may surface in three-

dimensional Lagrangian fluids. It is important to realize that the butterfly singularity only
exists at one point in space-time.
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Figure 12: The creation/annihilation of swallowtail singularities in a butterfly (A5) singu-
larity. The upper three panels show the unfolding of a A5 singularity in Lagrangian space.
The lower three panels show the corresponding unfolding in Eulerian space. The two panels
on the left show a fold (A2) sheet, and cusp (A3) curve. The middle panels show the cre-
ation/annihilation of the butterfly (A5) singularity on the cusp (A3) curve. The right panels
show the resulting fold (A2) sheet, cusp (A3) curve and swallowtail (A4) singularities.

4.2 The D family

The D family of caustics correspond to manifolds for which the caustic conditions holds for
two eigenvalue fields simultaneously,

1 + µi = 0 ,

1 + µj = 0 , for j 6= i

1 + µk 6= 0 , for k 6= i, j . (4.16)

From this, we may immediately infer that these caustics form at the intersection of two A2(t)
fold sheets, the Ai

2(t) and Aj
2(t) varieties. In all, two families of D caustics can be identified,

the D4 elliptic and hyperbolic umbilic caustics and the D5 parabolic umbilic caustic.

4.2.1 The D4 caustics

The D4 caustics are defined by the points q in Lagrangian space, at which two of the eigen-
values have the same value. For instance, the Dij

4 (t) caustic, with i 6= j, is outlined by the
points q for which at the time t the eigenvalues µi(t) and µj(t) are equal, µti = µtj . While the
eigenvalue µti defines the fold sheet Ai

2, and the eigenvalue µti the fold sheet Aj
2, the umbilic

Dij
4 caustic consist of the set of points q for which

Dij
4 (t) = {q ∈ L|q ∈ Ai

2(t) ∩A
j
2(t)} . (4.17)
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In three-dimensional space, one would expect that the intersection of the two sheets Ai
2(t)

and Aj
2(t) to consist of one-dimensional curves. This would certainly be true for two sheets

that would be entirely independent of each other. However, the situation at hand concerns a
highly constrained situation, in which the two eigenvalues µi and µj are strongly correlated.

Because of the latter, the intersection between the folds Ai
2 and Aj

2 is considerably more
complex. Instead of a continuous curve, the intersection consists of isolated, singular points.
A telling illustration – and discussion – of this, for the two-dimensional situation, can be
found in [39].

The D4 equation
To investigate the geometry and structure of the setDij

4 (t) we focus on the particular situation
of the set D12

4 (t), in which the two first eigenvalues µ1 and µ2 have the same value, µt1 = µt2.
Without loss of generality, we transform the coordinate system such that the third eigenvector
v3 defines the q3 axis. This transformation makes the q1q2-plane the one in which we see the
folding and collapse of the phase space sheets to the A1

2 and A2
2 caustics. In this coordinate

system, the deformation tensorM has the form

M =

M11 M12 0
M12 M22 0

0 0 µ3

 , (4.18)

in which µ3 is the third eigenvalue ofM. The eigenvalues µ1, µ2 and µ3 are obtained from
the resulting characteristics polynomial,

χ(µ) = M − µI

=
[
µ2 − Tr(M̃)µ+ det(M̃)

]
(µ3 − µ) = 0 , (4.19)

in which the M̃ is the {12}-submatrix of the deformation tensor,

M̃ =

(
M11 M12

M12 M22

)
, (4.20)

with trace Tr(M̃) and determinant det(M̃),

Tr(M̃) = M11 +M22 ,

det(M̃) = M11M22 −M2
12 . (4.21)

Solving the characteristic polynomial equation yields for the first two eigenvalues µ1 and µ2,

µ1,2 =
1

2

(
Tr(M̃)±

√
Tr(M̃)2 − 4 det(M̃)

)
, (4.22)

while, evidently, the third eigenvalue is µ3. For the particular situation of the D12
4 caustic, we

know that 1 +µ1 = 1 +µ2 = 0, and hence that µ1 = µ2 = µ (see eqn. (4.16)). This translates
into the the condition that

Tr(M̃)2 = 4 detM̃ . (4.23)

Expressed in terms of the M̃ matrix elements, this condition translates into

(M11 −M22)
2 + 4M2

12 = 0 , (4.24)
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from which we obtain the following 2 conditions for the D12
4 caustic.

M11(q) = M22(q) ,

M12(q) = 0 . (4.25)

These two conditions immediately imply that the matrix M̃ is proportional to the identity
matrix,

M̃ =

(
µ 0
0 µ

)
. (4.26)

D4 singularities and A3 varieties
An additional important consequence of the inferred constraints (4.25) for the D4 singularities
is that Dij

4 points will always be located on the two corresponding A3 varieties, Ai
3 and Aj

3.
We may infer this from the following observation. In the coordinate system introduced above
(cf. eq. (4.18)), the eigenvector for the third eigenvalue µ3 is given by v3 = (0, 0, 1). The
eigenvectors v1 and v2 both lie in the q1q2-plane, and since the matrix M̃ is degenerate we have
the freedom to take them to be orthogonal to the gradient of the corresponding eigenvalue
fields. This means that

v1 · ∇µ1 = µ1,1 = 0 ,

v2 · ∇µ2 = µ2,2 = 0. (4.27)

This proves the unfolding Dij
4 → Ai

3 and Dij
4 → Aj

3. For the relations between the singularity
classes see section 7.1. For a formal proof see [39].

The D4 location
Shell-crossing for A caustics is a one-dimensional process. A direct implication of this is that
the related critical points are equivalent up to diffeomorphisms. For the D family this is no
longer true. Shell-crossing for the D-family is two dimensional. As a consequence, the D4

class consist of hyperbolic (D+
4 ) and elliptic (D−4 ) umbilic points, i.e.

Dij
4 (t) = D+ij

4 (t) ∪D−ij4 (t) . (4.28)

In order to infer the corresponding caustic conditions we consider the two constraint quantities
Q1(q) and Q2(q) (see eq. (4.25)),

Q1(q) =
M11(q)−M22(q)

2
,

Q2(q) = M12(q) , (4.29)

which at the D4 singularity location vanish, i.e. Q1(D4) = 0 and Q2(D4) = 0. By a Taylor
expansion of Q1(q) and Q2(q) in a neighbourhood around the D4 singularity, we find that for
points located in the q1q2-plane,

Q1(q) = a q1 + b q2 ,

Q2(q) = c q1 + d q2 . (4.30)

In this expansion, we have taken the D4 singularity to define the origin of the coordinate
system. In this expansion, the parameters a, b, c and d are the derivatives of Q1(q) and Q2(q)
at the D4 location,

a =
1

2

∂(M11 −M22)

∂q1
, b =

1

2

∂(M11 −M22)

∂q2
, c =

∂M12

∂q1
, d =

∂M12

∂q2
. (4.31)

– 24 –



Figure 13: The hyperbolic/elliptic umbilic (D±4 ) singularities. The upper two panels show
the elliptic umbilic (D+

4 ) singularity. The lower panels show the hyperbolic umbilic (D−4 )
singularity. The two panels on the left are their representations in Lagrangian space and
the two panels on the right their representation in Eulerian space. The black sheets are
fold (A2) sheets corresponding to one eigenvalue field. The green sheets are fold (A2) sheets
corresponding to a second eigenvalue field. The red lines are cusp (A3) curves. The point in the
center depict the hyperbolic/elliptic umbilic (D±4 ) singularities. The hyperbolic umbilic (D+

4 )
and elliptic umbilic (D−4 ) singularity are also known as the purse and pyramid singularity.

As proposed by [28], the determinant SM of the corresponding Q1Q2 map,

SM = bc− ad =
1

2
[(M112 −M222)M112 − (M111 −M122)M122] , (4.32)

is invariant under rotations in the q1q2-plane 8. In the expression above, we have used the
notation

Miik =
∂Mii

∂qk
, Mikk =

∂Mik

∂qk
. (4.33)

8In fact, it can be shown that this determinant is a third-order invariant under rotations [28].
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Using the relations between the matrix elements M11, M22 and M12 and the eigenvalues µ1
and µ2, we may recast the determinant SM in an explicit expression incorporating these
eigenvalues,

SM =
1

2
[(µ1 − µ2),2µ1,2 − (µ1 − µ2),1µ2,1] . (4.34)

As [28] pointed out, the transformation can be shown to consist of two branches. Their
identification surfaces via a rescaling of the determinant via the multiplication by a positive
number. We then find that the two branches correspond to two separate singularity classes
of the D4 family,

D±ij4 (t) = {q ∈ L|q ∈ Ai
2(t) ∩A

j
2(t) ∧ sign(SM) = ±1} , (4.35)

where the points q ∈ Ai
2(t) ∩ A

j
2(t) are the points for whom at time t the caustic conditions

are simultaneously valid for two eigenvalues, i.e. 1 + µi = 1 + µj = 0. Integrated over time,
these D±ij4 (t) points trace out the curves D±ij4 ,

D±ij4 = {q ∈ L|q ∈ Ai
2(t) ∩A

j
2(t) ∧ sign(SM) = ±1, for some time t}. (4.36)

4.2.2 The D±4 points

The topology of the D±ij4 (t) variety changes at D±4 and D5 points.

The D±4 points are analogous to the A±4 points of the A-family. The D±4 points occur when
ith and jth eigenvalue field, µi and µj , restricted to the points q in the D±ij4 variety reaches
a minimum or maximum, i.e.

Dij+
4 = {q ∈ L|q ∈ D+ij

4 (t) ∧ µtk(q) max-/min. of µtk|D+ij
4

(k = i or k = j) for some t}

Dij−
4 = {q ∈ L|q ∈ D−ij4 (t) ∧ µtk(q) max-/min. of µtk|D−ij

4
(k = i or k = j) for some t}

(4.37)

Particularly interesting is the fact that the D±4 points are always created as a pair. Two
D+

4 points are created simultaneously, as are D−4 points. By implication, also the D±4 curves
(eq. (4.36)) are always created in pairs. This is in contrast to the D5 points, which go along
with the creation of a pair consisting of a D+

4 and a D−4 point.

4.2.3 The D5 caustics

The shell-crossing condition applied to the Dij
4 variety yields the caustic conditions for the

D5 parabolic umbilic singularity.
The manifold Dij

4 forms a singularity in the point qs ∈ Dij
4 (t) if and only if the tangent

vector T ∈ TqsD
ij
4 is normal to vk, with k 6= i, j. Hence, the normal, n = ∇(µti − µtj), is

orthogonal to both vi and vj ,

(µi − µj),i ≡ vi · ∇(µti − µtj) = 0 ,

(µi − µj),j ≡ vj · ∇(µti − µtj) = 0 . (4.38)

The collection of all such points

Dij
5 = {q ∈ L|q ∈ Dij

4 (t) ∧ (µi − µj),i = (µi − µj),j = 0 for some time t} . (4.39)
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The elliptic and hyperbolic umbilic (D±4 ) points merge in parabolic umbilic (D5) points, since
Dij

5 (t) ⊂ Dij
4 (t) and

SM =
1

2
{(µi − µj),jµi,j − (µi − µj),iµj,i} = 0. (4.40)

The D5 points are stable singularities in the classification of Lagrangian singularities. For
general dynamics they are unstable and not included in the classification scheme.

5 Classification of singularities

The form and morphology in which the various singularities that were inventorized in the
previous section will appear in the reality of a physical system depends on several aspects.
The principal influence concern the dynamics of the system, as well as its dimensionality. The
dynamics determines the way the fluid evolves, to a large extent via its dominant influence on
the accompanying flow of the fluid. This affects the morphology of the fluid, and in particular
the occurrence of singularities. Evidently, also the dimensionality of the fluid process will bear
strongly on the occurrence and appearance of singularities. Higher spatial dimensions may
enlarge the number of ways in which a singularity may form. It also influences the ways in
which singularities can dynamically transform into one another.

In this section, we provide an impression of the variety in appearance of singularities.
To this end, we will first discuss the generic singularity classification scheme that we follow.
It is not the intention of this study to provide an extensive listing of all possible classes of
fluids. Instead, to make clear in how different physical situations may affect the appearance
of singularities, we restrict our presentation of classification schemes to two different classes
of fluids. We also restrict our inventory to fluids in a three- dimensional context. It is
the most representative situation, and at the same time offers a good illustration of other
configurations.

5.1 Classes of Lagrangian fluids

To appreciate the role of the dynamics in constraining the evolution and appearance of a
fluid, and that of the formation and fate of the singularities in the fluid, it is important to
understand and describe its evolution in terms of six-dimensional phase space.

One way of defining phase space C is in terms of the Cartesian product of Lagrangian
and Eulerian manifolds L and E, i.e. C = L×E. In this context, the phase space coordinates
of a mass element are (q, x). Every point in phase space (q, x) ∈ C represents the initial and
final position q and x of a mass element at some time t. Evidently, one may also opt for the
more conventional definition consisting of space coordinates x and canonical momenta p, in
which case the phase space coordinate of a mass element are given by (x, p). However, for the
description of Lagrangian fluid dynamics it is more convenient to follow the first convention.
We should note that for this description of phase space Liouville’s theorem does not apply,
specifically not for the Euclidean notion of volumes.

At the initial time t = 0, the Lagrangian map is the identity map, i.e. for all q ∈ L
x0(q) = q. In phase space C, the fluid then occupies the submanifold L0 = {(q, x0(q)) ∈
C|q ∈ L}. If we equip C with a symplectic structure ω, we can prove this to be a so-called
Lagrangian submanifold (for a precise definition of Lagrangian submanifolds see appendix B).

Differences in the dynamics of a fluid reveal themselves in particular through major
differences in the phase space structure and topology of the manifolds delineated by the mass
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elements. To provide an impression of the differences in morphology and classification of
singularities emerging in fluids of a different nature, specifically that of fluids with a different
dynamical behaviour, we concentrate the discussion on two different classes of Lagrangian
fluids:

1. Generic Lagrangian fluids.
Lagrangian fluids for which the map xt : L→ E is a generic continuous and differentiable
mapping from L to E for every time t. The dynamics does not restrict the map x to any
extent. We describe the classification up to local diffeomorphisms, i.e. two singularities
are considered equivalent if and only if there exist local coordinate transformations,
which map them into each other.

2. Lagrangian fluids with Hamiltonian dynamics.
The evolution of the fluid is governed by a Hamiltonian. This assumption restricts
the possible evolution of the fluid. Formally, the map x corresponds uniquely to a so-
called Lagrangian map. The singularities of Lagrangian maps, known as Lagrangian
singularities, are classified up to Lagrange equivalence.

Lagrangian fluids with Hamiltonian dynamics form an important class of fluids: fundamental
theories of particle physics generally allow for a Hamiltonian description. Nonetheless, in a
range of practical circumstances we may encounter fluids that are either more or less con-
strained. An example are fluids with effective dynamics. They contain friction terms which
are not described by Hamiltonian systems. Such fluid systems are less restrictive than those
that are specifically Hamiltonian. On the other hand, there are also Hamiltonian fluids that
are characterized by additional constraints.

Systems that are characterized by either more or less constraints may involve different
classification schemes than regular Hamiltonian fluids. While it is beyond the scope of this
study to provide a complete, and exhaustive, inventory of all classification scheme, the com-
parison between the classification schemes of two different fluid configurations will provide
an impression of the variety. The principal intention is to provide an understanding of the
robustness of Hamiltonian systems.

5.2 Singularity classification

As we observed at the beginning of this paper (see eqn. (2.6)), singularities form when µi+1 =
0 for at least one i. The emerging singularities can be classified into several families. Here we
follow the classification scheme defined by Bruce [16] for singularities of generic one-family
maps x(q) : L→ E.

For practical reasons, we restrict the presentation of the classification to the case of L
and E being three-dimensional spaces. We also restrict ourselves to the classification of stable
singularities. Stability in this sense means that the singularities do not change in character
when a small fluctuation is applied to the Lagrangian map. It means that if the map xt has
a stable singularity in point p at time t, then the map xt + δxt with δxt sufficiently small, has
a singularity in the same equivalence class at a point close to p at a time close to t. Because
in practical situations unstable singularities only have a probability measure zero to occure,
we will not include them in our consideration.
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For the situation of three-dimensional fluids, we may use the formal criterion of their
corank to split the equivalence classes of singularities into three groups. The corank of a
matrix is defined as the number of spatial dimensions minus the rank of the matrix. It leads
to the following scheme, in which we recognize the singularities identified in the previous
sections,

Ak class.
When the deformation tensorM is non-invertible due to one eigenvalue,
it has corank 1. These singularities are classified by the Ak classes.

Dk class.
WhenM is non-invertible due to two eigenvalues, the singularity has co-rank 2.
Singularities with co-rank 2 are classified as Dk classes.

Ek class.
In 3-dimensional fluids, the points for which the Hessian has co-rank 3 is
of measure zero. Following this observation, we do not consider these
Ek class singularities.

Given that the Ek singularities in practice will never occur, we will restrict the discussion of
the singularity classification scheme to the Ak and Dk classes.

5.3 Singularity classification: generic fluids

For the classification of singularities of generic one-family maps x : L → E, with L and E
three-dimensional, we follow the classification by [16]. Important for our purpose, is that it
can be shown that the singularities that may emerge in generic mappings from L → E are
equivalent to those emerging in the simple linear maps

xt(q) = q + t u(q) , (5.1)

in which u is a vector field on L. In general, the vector field u(q) contains both a longitudinal
and a transversal part,

u(q) = ul(q) + ut(q) . (5.2)

The longitudinal component corresponds to potential motion and has curl zero, ∇× ul = 0,
while the transversal component has divergence zero, ∇·ut = 0. When the motion is restricted
to its longitudinal component, the displacement st(q) effectively is that of ballistic motion.

The classification of singularities in general Lagrangian fluid dynamics is expressed by
theorem 3. We restrict ourselves to listing the classification scheme of Bruce [16], in terms
of the generic expressions for the maps xt(q) of each of the classified singularities. The maps
xt(q) in the corresponding table assume that the singularity occurs at the origin q = 0, at
t = 1. In appendix C we show that these normal forms indeed satisfy the corresponding
caustic conditions. For the proofs and in-depth derivations we refer to Bruce [16].

Theorem: 3 A stable singularity occurring in a Lagrangian fluid with generic dynamics is,
up to local diffeomorphisms, equivalent to one of the following classes:

– 29 –



Singularity Singularity
class Map xt(q) name
A1 xt(q) = q trivial case
A2 xt(q) = q + t

(
0, 0, q23 − q3

)
fold

A3 xt(q) = q + t
(
0, 0, q1q3 + q33 − q3

)
cusp

A4 xt(q) = q + t
(
0, 0, q1q3 + q43 − q3

)
swallowtail

A5 xt(q) = q + t
(
0, 0, q1q3 + q2q

2
3 + q53 − q3

)
butterfly

D±4 xt(q) = q + t
(
0, q2q3 − q2, q22 ± q23 + q1q2 − q3

)
hyperbolic/elliptic

A±3 xt(q) = q + t
(
0, 0, (q12 ± q22)q3 + q33 − q3

)
A±4 xt(q) = q + t

(
0, 0, q1q3 ± q22q23 + q43 − q3

)
Note: The expressions in the table assume that the singularity occurs at the origin q = 0,

at t = 1. The first five singularity classes are the A-family. The subsequent class is the D-
family. The last two are the normal forms of the A3 and A4 points. The Ak class has co-rank
1 and co-dimension k−2. The D±4 singularities have co-rank 2 and are one-dimensional [16].

5.4 Singularity classification: Hamiltonian fluids

The evolution of Lagrangian fluids with Hamiltonian dynamics is more constrained than that
of generic Lagrangian fluids. As the fluid develops complex multistream regions, the phase
space submanifold Lt = {(q, xt(q))|q ∈ L} for fluids with Hamiltonian dynamics remains
Lagrangian. For generic fluid dynamics this is no longer true.

A key step in evaluating the emerging singularities is that of connecting the displacement
map st(q) to the Lagrangian map. In appendix B.2, we describe in some detail how a given
Lagrangian map can be constructed from a Lagrangian submanifold L. A Lagrangian map
can develop regions in which multiple points in the Lagrangian manifold are mapped to the
same point in the base space.

Lagrangian singularities are those points at which the number of pre-images of the La-
grangian map undergoes a change. Lagrangian catastrophe theory [5, 12] classifies the stable
singularities. This refers to the stability of singularities with respect to small deformations of
the Lagrangian manifold of L. This is true up to Lagrangian equivalence, a concept that is a
generalization of equivalence up to coordinate transformation. For a more formal and precise
definition of Lagrangian equivalence see appendix B.

It can be demonstrated [see 12] that every Lagrangian map l : L → C → E is locally
Lagrangian equivalent to a so-called gradient map. In other words, it means the corresponding
map xt is locally equivalent to

xt(q) = ∇qSt , (5.3)

in which St : L → R, for all q and t, is a scalar function. By recasting St in terms of a
function Ψt : L→ R,

St =
1

2
q2 + Ψt(q) , (5.4)

we find that locally the map x can be written in the form

xt(q) = q +∇qΨt(q) . (5.5)
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Evidently, this implies that the displacement map is longitudinal, and that the corresponding
Jacobian ∂st/∂q is symmetric.

The classification of singularities of a Lagrangian fluid with Hamiltonian dynamics is
expressed by theorem 4. The classification scheme listed is that of Bruce [16]. Also here,
the maps xt(q) in the table are for the singularity located at the origin q = 0, at t = 1.
In appendix C it is shown that these normal forms indeed satisfy the corresponding caustic
conditions. For proofs we refer to Bruce [16].

Theorem: 4 A stable Lagrangian singularity of a Lagrangian fluid with Hamiltonian dynam-
ics, is locally Lagrange equivalent to one of the following classes:

Singularity Singularity
class Map xt(q) name
A1 xt(q) = q trivial case
A2 xt(q) = q + t

(
0, 0, q23 − q3

)
fold

A3 xt(q) = q + t
(
1
2q

2
3, 0, q3(q1 − 1)

)
cusp

A4 xt(q) = q + t
(
1
2q

2
3, 0, q1q3 + q43 − q3

)
swallowtail

A5 xt(q) = q + t
(
1
2q

2
3,

1
3q

3
3, q1q3 + q2q

2
3 + q53 − q3

)
butterfly

D±4 xt(q) = q + t
(
± q1q2 − q1, hyperbolic/elliptic
±
(
1
2q

2
1 + 3

2q
2
2

)
+ 2q2q3 + 2q32 − q2, q22

)
D5 xt(q) = q + t

(
0, q32 − q2, q33 − q3

)
parabolic

A±3 xt(q) = q + t
(
q1q

2
3,±q2q23, (q12 ± q22)q3 + q33 − q3

)
A±4 xt(q) = q + t

(
1
2q

2
3,±2

3q2q
3
3, q1q3 ± q22q23 + q43 − q3

)
Note: The expressions in the table assume that the singularity occurs at the origin q = 0,

at t = 1. The first five singularity classes are the A-family. The subsequent two are the D-
family. The last two are the normal forms of the A3 and A4 points. The Ak class has co-rank
1 and co-dimension k − 2. The Dk singularities have co-rank 2 and co-dimension k − 2 [5].

Comparing the classification schemes for generic Lagrangian singularities and those for
Lagrangian fluids with Hamiltonian dynamics, we may note the similarities in the classifi-
cation. Both classifications have an A and a D family. It can be demonstrated that the A
singularity classes of the scheme for Lagrangian fluids with Hamiltonian dynamics are con-
tained in those corresponding to the generic Lagrangian fluid. Concretely, this means that a
displacement field corresponding to the Hamiltonian Ak class is also an element of the generic
Ak class. On the other hand, there are significant differences in the case of the D families.

The D families are some what different. The Hamiltonian D4 class is contained in
the generic D4 class. However, the Hamiltonian D5 class has no analogue in the generic
classification scheme. This is a result of the D5 singularity not being stable under coordinate
transformations.

A final remark concerns the singularity classification schemes for higher dimensional
fluids. For these a more elaborate classification scheme applies. This classification scheme is
described in appendix B.
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5.5 Unfoldings

Singularities generally change their class upon small, but finite, deformations of the displace-
ment map st. The corresponding evolution of a singularity follows the universal unfolding
process of singularities. The general behavior is described in the following unfolding diagram,
in which the arrows indicate the singularity into which specific singularities can transform.

A1 A2 A3 A4 A5

D4 D5

For i ≥ 2, the Ai singularities decay into Ai−1 singularities. For i ≥ 5, the Di singularities
decay into either Ai−1 or Di−1 singularities. In section 7 we will describe how the decay of
singularities is connected to the evolution of the large-scale structure in the Universe and in
outlining the spine of the cosmic web.

5.6 Density profile

Vesilev [68] inferred the density profiles of the various classes of singularities, in case they
emerge as a result of potential motion in a collision-less self-gravitating medium. For each
of the mass concentrations in and around these singularities, he found scale free power-law
profiles. The radially average profiles display the following decrease of density ρ(r) as a
function of radius r.

Singularity Singularity Profile ρ(r)
class name
A2 fold ρ(r) ∝ r−1/2
A3 cusp ρ(r) ∝ r−2/3
A4 swallowtail ρ(r) ∝ r−3/4
A5 butterfly ρ(r) ∝ r−4/5

D4 hyperbolic/elliptic ρ(r) ∝ r−1
D5 parabolic ρ(r) ∝ r−1 log (1/r)

With respect to these radially averaged profiles, we should realize that the mass distribution
in and around the singularities is highly anisotropic. This is true for any dimension in which
we consider the structure around the singularities.

Notwithstanding this, we do observe that the steepest density profiles are those around
the point singularities A5 and D5. However, they are mere transient features that will only
exist for a single moment in time. The point singularities A4 and D4 display a less pronounced
behaviour. However, they move over time. Also, we see that the cusp singularity A3 possesses
a steeper mass distribution that that in and around the sheet singularity A2.

6 The caustic skeleton & the cosmic web

The process of formation and evolution of structure in the Universe is driven by the gravita-
tional growth of tiny primordial density and velocity perturbations. When it reaches a stage
at which the matter distribution starts to develop nonlinearities, we see the the emergence

– 32 –



of complex structural patterns. In the current universe we see this happening at Megaparsec
scales. On these scales, cosmic structure displays a marked intricate weblike pattern, the
Cosmic Web. Prominent elongated filamentary features define a pervasive network. Forming
the dense boundaries around large tenuous sheetlike membranes, the filaments connect up at
massive, compact clusters located at the nodes of the network and surround vast, underdense
and near-empty voids.

The gravitational structure formation process is marked by vast migration streams,
known as cosmic flows. Inhomogeneities in the gravitational force field lead to the displace-
ment of mass out of the lower density areas towards higher density regions. Complex struc-
tures arise at the locations where different mass streams meet up. Gravitational collapse sets
in as this happens. In terms of six-dimensional phase space, it corresponds to the local folding
of the phase space sheet along which matter – in particular the gravitationally dominant dark
matter component – has distributed itself.

The positions where streams of the dark matter fluid cross are the sites where gravi-
tational collapse occurs. The various types of caustics described and classified in our study
mark the different configurations in which this process may take place. Their locations trace
out a Lagrangian skeleton of the emerging cosmic web, marking key structural elements
and establishing their connectivity (also see the discussion in [39]). In other words, the
A3, A4, A5, D4, D5 varieties, in combination with the corresponding A±3 , A

±
4 , and D

±
4 points,

are the dynamical elements whose connectivity defines the weaving of the the cosmic web
[4, 14, 22, 67, 73].

On the basis of this observation, we may obtain the skeleton of the cosmic web in Eulerian
space by means of the Lagrangian map xt to Eulerian space. Following the identification of
the various caustic varieties and caustic points in Lagrangian space, the application of the
map xt will produce the corresponding weblike structure in Eulerian space.

Of central significance in our analysis and description of the cosmic web is the essential
role of the deformation tensor eigenvector fields in outlining the caustic skeleton and in es-
tablishing the spatial connections between the various structural features. So far, Lagrangian
studies of the cosmic web have usually been based on the role of the eigenvalues of the de-
formation tensor (for recent work see [23, 50, 71]). Nearly without exception, they ignore the
information content of the eigenvectors of the deformation tensor. In this work we actually
emphasize that the eigenvectors are of key importance in tracing the spatial locations of the
different types of emerging caustic features and, in particular, in establishing their mutual
spatial connectivity. This important fact finds its expression in terms of the caustic conditions
that we have derived in this study.

The study by Hidding et al. [39] illustrated the important role of the deformation field
eigenvectors in outlining the skeleton of the cosmic web, for the specific situation of A3 cusp
lines in the 2-D matter distribution evolving out of a Gaussian initial density field. The
present study describes the full generalization for the evolving matter distribution (a) for
each class of emerging caustics in (b) in spaces of arbitrary dimension D.

A telling and informative illustration of the intimate relationship between the caustic
skeleton defined by the derived caustic conditions and the evolving matter distribution is
that offered by the typical patterns emerging in the two-dimensional situation. Figure 14
provides a direct and quantitative comparison between the caustic skeleton of the cosmic
web and the fully nonlinear mass distribution in an N-body simulation. The three panels
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Figure 14: Spatial distribution of singularities in the Lagrangian and Eulerian Cosmic Web.
The figure compares the spine of the cosmic web with the mass distribution in a 2-D N -
body simulation. Left panel: initial field of density fluctuations and the skeleton of identified
singularities/catastrophes. Right panel: density field of an evolved 2D cosmological N -body
simulation, in which the Lagrangian skeleton of singularities is mapped by means of the
Zel’dovich approximation. From Feldbrugge et al. [33].

in the lefthand column show the Lagrangian skeleton for a two-dimensional fluid. The fluid
is taken to evolve according to the Zel’dovich approximation [73] (see appendix A), which
represents a surprisingly accurate first-order Lagrangian approximation of a gravitationally
evolving matter distribution [see e.g. 64]. The initial density field of the displayed models is
that of a Gaussian random density field [2, 13], which according to the latest observations
and to current theoretical understanding is an accurate description of the observed primordial
matter distribution [27, 46, 56].

To enable our understanding of the hierarchical process of structure formation and the
resulting multiscale structure of the cosmic web, we assess the caustic structure of the La-
grangian matter field at three different resolutions. In figure 14 the field resolution decreases
from the top panels to the bottom panels, as the initial density field was smoothed by an in-
creasingly large Gaussian filter. The contour maps that form the background in these panels
represent the resulting initial density fields. The red lines trace the A3 variety, i.e. the A3

lines, for the largest eigenvalue µ1 field (also see fig. 4 to appreciate how they are related).
Also the A±3 points andD±4 points are shown, the first as red dots, the latter as black triangles.

The resulting weblike structure in Eulerian space is depicted in the corresponding right-
hand panels. The A3 lines, A±3 points and D±4 points are mapped to their Eulerian location by
means of the Zel’dovich approximation. The red lines, red dots and black triangles represent
the Eulerian skeleton corresponding to the Zel’dovich approximation. These are superim-
posed on the density field of the corresponding N-body simulations. The comparison between
the latter and the Eulerian skeleton reveal that the caustic skeleton – the assembly of A3

lines, A±3 points and D±4 points – trace the principal elements and connections of the cosmic
web seen in the N-body simulations remarkably well (see table 1 for the identification of the
lines and points to the cosmic web). Moreover, by assessing the caustic structure at different
resolutions of the density field, one obtains considerable insight into the multiscale structure
and topology of the cosmic web.

One of the unique features facilitated by the caustic conditions that we have derived in
the previous sections is the ability to go beyond the two-dimensional case and construct and
explore the full caustic skeleton of the three-dimensional mass distribution. In the case of
the skeleton of the cosmic web defined by the three-dimensional mass distribution, the cusp
(A3) sheets correspond to the walls or membranes of the large scale structure [14, 22, 52, 67].
The swallowtail (A4) and elliptic/hyperbolic umbilic (D±4 ) lines correspond to the filaments
of the cosmic web and the butterfly (A5) and parabolic umbilic (D5) points correspond to
the cluster nodes of the network [3, 14, 22, 52, 67]. The identification of the caustics in the
three dimensional cosmic web is summarized in table 1.

To appreciate the impressive level at which the caustic skeleton is outlining the three-
dimensional weblike mass distribution, figure 15 provides an instructive illustration. The
figure depicts elements of the caustic skeleton of the Zel’dovich approximation in a 200h−1
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Figure 15: The log density field of a dark matter N -body simulation with ΛCDM cosmol-
ogy in a box of 200h−1 Mpc with 5123 particles and elements of the caustic skeleton of the
Zel’dovich approximation [52]. Top right panel: the cusp (A3) sheets (dark blue), the swal-
lowtail (A4) lines (light blue) and the elliptic/hyperbolic umbilic lines (yellow) corresponding
to the lowest eigenvalue field of the caustic skeleton. The initial density field was smoothed
on the scale 6.3h−1 Mpc. Bottom left panel: the swallowtail (A4) lines (light blue) and the
elliptic/hyperbolic umbilic lines (yellow) corresponding to the lowest eigenvalue field of the
caustic skeleton. The initial density field is smoothed at 3.1h−1 Mpc.
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Singularity Singularity Feature in the Feature in the
class name 2D cosmic web 3D cosmic web
A2 fold collapsed region collapsed region
A3 cusp filament wall or membrane
A4 swallowtail cluster or knot filament
A5 butterfly not stable cluster or knot

D4 hyperbolic/elliptic cluster or knot filament
D5 parabolic not stable cluster or knot

Table 1: The identification of the different caustics in the 2- and 3-dimensional cosmic web

Mpc box. The resulting skeleton is superposed on the log density field of a dark matter N -
body simulation in a ΛCDM cosmology with 5123 particles [52]. We should emphasize that
the Zel’dovich approximation is linear and that the corresponding skeleton is completely local
in the initial conditions. While a full and detailed analysis of these three-dimensional weblike
patterns is the subject of an upcoming accompanying paper [32], the illustrations of figure 15
already give a nice impression of the ability of the caustic conditions to outline the spine of
the cosmic web.

The top righthand panel contains the cusp (A3) sheet (dark blue colour) and the swal-
lowtail (A4) and elliptic/hyperbolic umbilic (D±4 ) lines (light blue colour) corresponding to
the lowest eigenvalue field, superimposed on the density field of the N -body simulation (red
shaded log density field values). The pattern concerns the caustics obtained for a displace-
ment field that is filtered at a length scale of 6.3h−1 Mpc. Close inspection reveals the
impressive correspondence between the cusp sheets of the caustic skeleton and the flattened
- two-dimensional - features in the mass distribution of the cosmic web. Notwithstandig this,
one may also observe that the two-dimensional skeleton does not capture all the structures
present in the N -body simulation. This is predominantly an issue of scale, as the correspond-
ing displacement field cannot resolve and trace features whose size is more refined than the
6.3h−1 Mpc filter scale.

An impression of the more refined structure can be obtained from the bottom left panel
of figure 15, which follows the line-like elements of the caustic skeleton at a length scale of
3.1h−1 Mpc. More specifically, it shows the swallowtail (A4) and elliptic/hyperbolic umbilic
(D±4 ) lines of the caustic skeleton. The correspondence of these with the prominent and
intricate filamentary pattern in the cosmic mass distribution is even more outstanding than
that of the A3 sheets with the membranes in the density field. It is important to realize,
and emphasize, that apparently we do not need to involve the second eigenvalue to create
a filament in the network of caustics. In other words, collapse along the second eigenvector
is not necessary to create a filament-like structure (also see [39]). This leads to a radical
new insight on structure formation, in that it suggests the existence of different possible
late-time morphologies for filaments [40]. We may even relate this to the prominence of the
corresponding filamentary features: as they concern features that have experienced collapse
along two directions, the umbilic D±4 filaments will have a higher density and contrast than
the filigree of more tenuous A±4 filaments. An additional observation of considerable interest
is that the line-like A4 and D±4 features trace the connectivity of the cosmic web in meticulous
detail.
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6.1 Higher order Lagrangian perturbations

Evidently, the details of the dynamical evolution will bear a considerable influence on the
developing caustic structure. This not only concerns the dynamics of the system itself, but also
its description. The examples that we presented in the previous sections showed the caustic
features developing as the dynamics is predicated on the first-order Lagrangian approximation
of the Zel’dovich formalism [73]. The visual comparison with the outcome of the corresponding
N -body simulations demonstrated the substantial level of agreement. Nonetheless, given the
nature of singularities, the process of caustic formation might be very sensitive to minor
deviations of the mass element deformations and hence the modelling of the dynamics. This
may even strongly affect the predicted population of caustics and their spatial organization
in the skeleton of the cosmic web. Some indications on the level to which the spatial mass
distribution is influenced may be obtained from an early series of papers by Buchert and
collaborators [17–21], who were the first to explore the formation of structure in higher-order
Lagrangian perturbation schemes and investigate in how far they would effect the occurrenc
and location of multistream regions. An important finding from their work is that 2nd order
effects are substantial, while 3rd order ones are minimal. Elaborated and augmented by
additional work [15, 61], 2nd order Lagrangian perturbations – usually designated by the
name 2LPT – have been established as key ingredients of any accurate analytical modeling
of cosmic structure growth. In a follow-up to the present study, we investigate in detail the
repercussions of different analytical prescriptions for the dynamical evolution of the cosmic
mass distribution for the full caustic skeleton of the cosmic web.

In addition to 2LPT, we will systematically investigate the caustic skeleton in the context
of the adhesion approximation [35, 36, 38, 41, 64, 69]. Representing a fully nonlinear extension
of the Zel’dovich formalism, it includes an analytically tractable gravitational source term for
the later nonlinear stages. It accomplishes this via an artificial viscosity term that emulates
the effects of gravity, resulting in the analytically solvable Burger’s equation. With the
effective addition of a gravitational interaction term for the emerging structures, unlike the
Zel’dovich approximation the adhesion model is capable of following the hierarchical buildup
of structure and the cosmic web [38, 40, 41]. At early epochs, the resulting matter streams
coincide with the ballistic motion of the Zel’dovich approximation. At the later stages, as
the mass flows approach multistream regions a solid structure is created at the shell-crossing
location. Matter inside these structures is confined to stay inside, while outside collapsed
structures the results from the Zel’dovich approximation and adhesion are identical. The
caustics from the Zel’dovich approximation are compressed to infinitesimally thin structures,
hence unifying the Zel’dovich’ idea of collapsed structures in terms of shell crossing with
a hierarchical formation model. While offering a complete model for the formation and
hierarchical evolution of the cosmic web, it does accomplish this by seriously altering the flow
pattern involved in the buildup of cosmic structure. This, in turn, is expected to affect at least
to some extent the properties and evolution of the caustic population and its connectivity.

6.2 Gaussian statistics of the caustic skeleton

In addition to characterizing the geometric and topological outline of the cosmic web in terms
of the caustic skeleton, our study points to another important and related application of the
formalism described. The fact that the linear Zel’dovich approximation provides such an ac-
curate outline of the skeleton of the cosmic web establishes an important relation between the
primordial density and flow field and the resulting cosmic web. Via the Zel’dovich approxima-
tion, we may relate the caustic skeleton directly to the statistical nature and characteristics
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of the primordial density field. In other words, we may directly relate the structure of the
cosmic web to the nature of the Gaussian initial density field. This, in turn, establishes a
direct link between the geometric and topological properties of the cosmic web and the un-
derlying cosmology. In other words, our analysis of the caustic skeleton may define a path
towards a solidly defined foundation and procedure for using the structure of the observed
cosmic web towards constraining global cosmological parameters and the cosmic structure
formation process.

The fact that we may invoke Gaussian statistics facilitates the calculation of a wide
range of geometric and topological characteristics of the cosmic web, as they are directly
related to the primordial Gaussian deformation field, its eigenvalues and eigenvectors. For an
example of such a statistical treatment of 2-dimensional fluids, we refer to [31]. It describes
how one may not only analytically compute the distribution of maxima, or minima, but also
the population of singularities and the length of caustic lines. In an accompaying study,
we present an extensive numerical analysis of the statistics of 2- and 3-dimensional caustic
skeleton will follow in [32]. This will establish the reference point for the subsequent solid
analytical study of interesting geometric properties of the cosmic web (for the initial steps
towards this program see [33]).

This will represent a major extension of statistical descriptions that were solely based on
the eigenvalue fields. The latter would make it possible to study the number density of clusters
and void basins, make predictions on the statistical properties of angular momentum, and
even several aspects of the cosmic skeleton (e.g. [29, 57]). In this context it is also relevant to
realize that the meaning of eigenvalues extends beyond that known for potential deformation
fields, as in more general situations they may have a complex value related to the presence
of vorticity in the matter flow field. Nonetheless, as we have argued extensively in previous
sections, it is only by invoking the information contained in the corresponding eigenvector
fields that we may expect to obtain a more complete census of intricate spatial properties of
the cosmic web.

7 Dynamics and evolution of caustics

The caustic conditions presented in this study reveal the profound relationship between the
various classes of singularities that may surface in fluids. Besides the aspect of the identifi-
cation and classification of singularities, we need to have insight in the transformation and
evolution of caustics and caustic networks that accompanies the dynamical evolution of a
fluid. The evolution of the fluid, dictated by the dynamics of the system, generally involves
the development of ever more distinctive structures and the proliferation of complex structural
patterns.

Tracing the evolution of a fluid starts at an initial time t = 0. At that time, the
displacement map st is the zero map. Amongst others, this implies the fluid does not (yet)
contain singularities. Starting from these near uniform initial conditions, the structure in the
evolving fluid becomes increasingly pronounced. The phase space sheet that it occupies in
six-dimensional space gets increasingly folded. Its projection on Euclidian space follows this
process, and it is as a result of the folding process that we see the fluid developing singularities.
While the dynamical evolution proceeds to ever more advanced stages, we not only see the
appearance of more singularities, but also the transformation of one class of singularities into
another one. A complementary process that may underlie the changes of local geometry that
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of the merging of singularities into a new singularity, itself a manifestation of the hierarchical
buildup of structural complexity.

The eigenvalue landscape in figure 4 offers an instructive tool for facilitating and guiding
our understanding and visual intuition for the iterative folding of singularities in phase space
and the accompanying caustic transformations.

7.1 Caustic mutations and transformations: evolutionary sequence

The dynamical evolution of a fluid goes along with a rich palet of local processes. These involve
fundamental mutations in the local singularity structure that lead to significant topological
changes of the spatial pattern forming in the fluid. In some systems and situations this will
be a key element in the hierarchical buildup of structure. Another example where we can
recognize such transformations is in the cascade of turbulent features down to ever smaller
scales in the still largely understood process of turbulence.

The fundamental notion in these structural mutations in the evolving fluid is that of the
ruling dynamics of the system evoking changes in the deformation field. Small deformations
will lead to the decay of singularities into different ones belonging to other singularity classes.
Conversely, they may get folded according to a rigid order.

The sequence of singularity mutations is not random and arbitrary. Due to the strict
geometric conditions and constraints corresponding to the various singularities, expressed in
the caustic conditions discussed extensively in this study, a given singularity is only allowed
to transform into a restricted set of other singularities. Conversely, a given singularity may
only have emanated from a restricted set of other singularities.

In most situations a particular singularity can have decayed from only one distinctive
class of singularities. Some may have descended from two other singularity classes. Likewise,
most singularities can decay only into one distinctive other class of singularity. This is true
for all A-family singularities. D-family singularities have a richer diversity of options, with
the D5 points being able to decay into 3 different ones, while the D4 points may decay into
2 distinct A3 points. The entire singularity transformation and unfolding sequence may be
transparently summarized in the unfolding diagram below.

A1

Ai
2 Ai

3 Ai
4 Ai

5

Dij
4 Dij

5

Aj
5Aj

4Aj
3Aj

2

The unfolding diagram follows directly from Lagrangian catastrophe theory, although it can
also be derived from the caustic conditions. The unfoldings of an Ai

k singularities into an
Ai

k−1 singularities, with k ≥ 2, follow trivially from the caustic conditions. The same holds
for the unfolding of the Dij

5 singularities into the Dij
4 singularities. The decay from the D4

to the A3 singularities are proven in section 4.2.1. The mutations Dij
5 → Ai

4 and Dij
5 → Aj

4

follow directly since the shell-crossing of the Dij
5 caustic is analogous to the shell-crossing

condition on the Ai
4 and Aj

4 caustics.
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7.2 Singularity transformations

The principal family of singularities – principal in terms of rate of occurrence and spatial
dominance – is the A-family. They are induced by singularities in the geometric structure of
one of the eigenvalue fields. In physical terms, they involve one-dimensional collapse on to the
emerging singularity. Of a more challenging nature within the evolutionary unfolding of the
patterns emerging in fluid flow is the formation of the D-family of singularities. They occur
when two fold sheets corresponding to different eigenvalue fields intersect. Amongst others,
this means that the D singularities connect A singularities corresponding to two eigenvalue
fields.

7.2.1 Evolving A-family caustics

The most prominent and abundant singularities are those of the two-dimensional fold sheets
Ai

2(t). In Eulerian space, they mark the regions where mass elements are turned inside out as
the density attains infinity. This happens while they represent the locations where separate
matter streams are crossing each other. As time proceeds, the fold sheets Ai

2(t) sweep over an
increasingly larger Lagrangian region. Ultimately, integrating over time, they mark an entire
Lagrangian volume, which is labelled as Ai

2. The Ai
2 set forms a three-dimensional variety.

When we wish to identify where a particular individual fold sheet is born, we turn
to the cusp points Ai+

3 . They are the points on the fold sheets where the corresponding
eigenvalue field attains an extremum. Because of this, they mark the sites of birth of the
fold singularities. As the Ai

2(t) sheets unfold, at the edges their surface gets wrapped in a
higher order singularity, the cusp curves Ai

3(t). In time, these curves move through space and
trace out cusp sheets Ai

3. In the context of the Megaparsec scale matter distribution in the
Universe, the cusp sheets are to be associated with the walls or membranes in the cosmic web
[3, 14, 22, 52, 67].

A dynamically interesting process occurs at the cusp points Ai−
3 , which are the saddle

points of the corresponding eigenvalue field µti that at a given time are encapsulated by the
fold sheet Ai

2. At the Ai−
3 points, we see the merging or annihilation of fold sheets Ai

2 into
a larger structure (cf. figure 4). Mathematically, they mark the key locations where the
topology of the eigenvalue field changes abruptly. Physically, they are associated with the
merging of separate structural components, a manifestation of the hierarchical buildup of
structural complexity [22, 67].

Also the cusp curves Ai
3(t) can get folded. In Eulerian space, the folding of the cusp

curves manifests itself as Ai
4(t) swallowtail points. As time proceeds, these points move

through space and define the swallowtail curve Ai
4. It is of interest to note that the swallowtail

curve is embedded in the cusp sheet, i.e. Ai
4 ⊂ Ai

3. In the context of the cosmic structure
formation process, the swallowtail curves outline and trace perhaps the most outstanding
feature of the cosmic web, the pronounced elongated filaments that form the of spine the
weblike network [3, 22, 67].

Also these features build up in a hierarchical process of small filaments merging into
ever larger and more prominent arteries. In the context of the evolving singularity structure
that we study, this process is represented by the Ai+

4 points and Ai−
4 points. They define

the decisive junctions where significant changes in topology occur. For the Ai±
4 points this

concerns their identity in the gradient of the eigenvalue field, in which the Ai+
4 are maxima
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and minima and Ai−
4 points are the saddle points. The implication of this is that cusp curves

get created or annihilated at Ai+
4 points, while they merge or separate at Ai−

4 points.

The final morphological constituent in this structural hierarchy of singularities is that
of the butterfly points Ai

5. They conclude the A-family of singularities, i.e. the family
of singularities that correspond to the spatial characteristics of the field of one eigenvalue
µi. The swallowtail curves Ai

4 get folded at Ai
5 butterfly points. In the three-dimensional

structural pattern that formed in the fluid, these will represent nodes. In the cosmic web,
they define the nodal junctions, connecting to the various filamentary extensions that outline
its spine [3, 14, 22, 25, 67]. In principle, for a given initial field and dynamical evolution,
one might use these identifications to e.g. evaluate how many filaments are connected to the
network nodes [4, 57].

7.2.2 Evolving D-family caustics

The Ai
2(t) and A

j
2(t) sheets, with i 6= j, intersect in the elliptic and hyperbolic umbilic points

D±ij4 (t). In contrast to the A family of singularities, the collapse into D singularities is two-
dimensional. It leads to the birth of the socalled umbilic points. Over time, they trace out
the umbilic curve D±ij4 . The collapse process may occur in two distinctive ways, indicated by
the labels + and −.

The topology of the variety D±ij4 (t) changes at Dij±
4 and D5 points. An interesting char-

acteristic of umbilic curves is that they are always created or annihilated in pairs. The Dij±
4

points correspond to the creation or annihilation of two D±ij4 curves of the same signature.
By contrast, the Dij

5 points correspond to the creation or annihilation of a pair with one D+ij
4

and one D−ij4 point.

8 Discussion & Conclusions

In this study we have developed a general formalism for identifying the caustic structure
of a dynamically evolving mass distribution, in an arbitrary dimensional space. Through a
new and direct derivation of the caustic conditions for the classification and characterization
of singularities that will form in an evolving matter field, our study enables the practical
implementation of a toolset for identifying the spatial location and outline of each relevant
class of emerging singularities. By enabling the development of such instruments, and the
application of these to any cosmological primordial density and velocity field, our study
opens the path towards further insight into the dynamics of the formation and evolution of
the morphological features populating the cosmic web. In particular significant is that it will
enable us to obtain a fundamental understanding of the spatial organization of the cosmic
web, i.e. of the way in which these structural components are arranged and connected.

Caustics are prominent features emerging in advanced stages of dynamically evolving
fluids. They mark the positions where fluid elements cross and multi-stream regions form.
They are associated with regions of infinite density, and often go along with the formation
of shocks. In the context of the gravitationally evolving mass distribution in the universe,
caustics emerge in regions in which nonlinear gravitational collapse starts to take place. As
such, they are a typical manifestation of the structure formation process at the stage where
it transits from the initial linear evolution to that of more advanced nonlinear configurations
involving gravitational contraction and collapse. The overall spatial organization of matter at
the corresponding scale is that of the cosmic web, which assembles flattened walls, elongated
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filaments and tendrils and dense, compact cluster nodes in an intricate multiscale weblike
network that pervades the Universe.

Over the past decades our understanding of the formation and evolution of the cosmic
web has advanced considerably. The availability of large computer simulations have been
instrumental in this, as they enabled us to follow the cosmic structure formation process
in detail (see e.g. [60, 65, 70]). In combination with new theoretical insights [14, 67], this
has led to the development of a general picture of the emergence of the weblike matter and
galaxy distribution. The full phase-space dynamics of the process and its manifestation in the
emerging matter distribution is an instrumental aspect of this that only recently received more
prominent attention. While the study by Zel’dovich [73] already underlined the importance of
a full phase-space description for understanding cosmic structure formation (see also [63, 64]),
with the exception of a few prominent studies [10] the wealthy information content of full 6-D
phase-space escaped attention.

A series of recent publications initiated a resurgence of interest in the phase-space aspects
of the cosmic structure formation process. They realized that the morphology of components
in the evolving matter distribution is closely related to its multistream character [1, 30, 54, 58,
62] (for an early study on this observation see [20]). This realization is based on the recognition
that the emergence of nonlinear structures occurs at locations where different streams of the
corresponding flow field cross each other. Looking at the appearance of the evolving spatial
mass distribution as a 3D phase space sheet folding itself in 6D phase space, this establishes
a connection between the structure formation process and the morphological classification of
the emerging structure. Moreover, to further our understanding of the dynamical evolution
and buildup of the cosmic matter distribution, we also need to answer the question in how
far the various emerging structural features connect up in the overall weblike network of the
cosmic web.

To be able to answer the questions, we study the emergence of singularities and caustics
in a dynamically evolving mass distribution. Our analysis is built on the seminal work by
Arnol’d, specifically his classification of singularities in Lagrangian catastrophe theory. In a
three-dimensional setting we can recognize two series of singularities, the Ak and Dk series.
The 4 classes of Ak singularities - A2, A3, A4 and A5 - are the singularities for which the
caustic condition holds for one eigenvalue. The D-family of umbilic singularities - includ-
ing the D+

4 , D
−
4 and D5 - are caustic for which the caustic conditions are satisfied by two

eigenvalue simultaneously. In three-dimensional fluids, the case in which all three eigenvalues
simultaneously satisify the caustic conditions, the E-family caustics, is non-degenerate.

One important aspect of our study is the definition of an alternative and more straight-
forward derivation of caustic conditions. These conditions consist of a logical sequence of
straightforward mathematical expressions involving both the eigenvalues and eigenvectors
of the deformation tensor field of an evolving matter field. The conditions are derived for
Lagrangian catastrophe theory, and as such are restricted to Hamiltonian dynamics. The
derived conditions are valid for generic fluids, and also allow for the systems that include
dissipative terms and vorticity.

On the basis of the derived formalism, we show how the caustics of a Lagrangian fluid
form an intricate skeleton of the nonlinear evolution of the fluid. The family of newly derived
caustic conditions allow a significant extension and elaboration of the work described in Arnold
et al. (1982) [10]. They classified the caustics that develop in one- and two-dimensional sys-
tems that evolve according to the Zel’dovich approximation. While [8] did offer a qualitative
description of caustics in the three-dimensional situation, this did not materialize in a prac-
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tical application to the full three-dimensional cosmological setting. The expressions derived
in our study, and the specific identification of the important role of the deformation tensor
eigenvectors, have enabled us to breach this hiatus. To identify the full spatial distribution
and arrangement of caustics in the evolving three-dimensional cosmic matter distribution, we
follow the philosophy exposed in the two-dimensional study by Hidding et al. 2014 [31, 39].
By relating the singularity distribution to the spatial properties of the initial Gaussian defor-
mation field, [39] managed to identify and show the spatial connectivity of singularities and
establish how in a hierarchical evolutionary sequence they evolve and may ultimately merge
with surrounding structures.

When applied to the Zel’dovich approximation for cosmic structure formation, the caus-
tic conditions form a skeleton of the caustic web. In the context of the cosmic web, we may
identify these singularities with different components in the cosmic web. This observation
by itself leads to some radically new insights into the origin of the structural features in the
cosmic web. The A3 cusp singularities are related to the walls of the skeleton of the comsic
web. The A4 swallowtail singularities trace the filamentary ridges and tendrils in the cosmic
web. Also the D±4 hyperbolic and elliptic umbilic singularities are related to the filamentary
spine of the spine, as they define the dense filamentary extensions of the cluster nodes. The
butterfly (A5) and parabolic umbilic (D5) singularities are both connected with the nodes of
the weblike pattern. One immediate observation of considerable interest is that the line-like
A4 and D±4 features trace the connectivity of the cosmic web in meticulous detail. Perhaps
equally or even more interesting, and of key importance for our understanding of the dy-
namical evolution of the cosmic web, is the observation that both filaments and tendrils, as
well as nodes, may have formed due to the folding by the phase-space sheet induced by only
one deformation eigenvalue: the filamentary A4 caustics and nodal A5 caustic belong to the
one eigenvalue A family of caustics. In other words, collapse along the second eigenvector
is not necessary to creat a filament-like structure, and not even collapse along both second
and third eigenvector is needed for the appearance of nodes (see [39, 40]). This insight leads
to a radical new insight on structure formation, in that it suggests the existence of different
possible late-time morphologies for filaments and nodes [40].

A realization of key importance emanating from our work is that it is not sufficient to
limit a structural analysis to the eigenvalues of the deformation tensor field. Usually neglected,
we argue – and show by a few examples – that it is necessary to include the information
contained in the (local) deformation tensor eigenvectors, our study has demonstrated and
emphasized that for the identification of the full spatial outline of the cosmic web’s skeleton. In
an accompanying numerical study of the caustic skeleton in cosmological N -body simulations,
we illustrate how essential it is to invoke the deformation eigenvectors in the analysis [32].
This study will present a numerical and statistical comparison between the matter distribution
in the simulation and the caustic skeleton of the three-dimensional cosmic web.

Amongst the potentially most important products of the current project is the fact that
the caustic skeleton inferred from the Zel’dovich approximation adheres closely to the spine
of the full nonlinear matter distribution. The direct implication is that we may directly link
the outline of the cosmic web to the initial Gaussian density and velocity field. On the basis
of the corresponding deformation field, one may then expect it to be possible to calculate a
range of properties analytically. The fact that we may invoke Gaussian statistics facilitates
the calculation of a wide range of geometric and topological characteristics of the cosmic
web, as they are directly related to the primordial Gaussian deformation field, its eigenvalues
and eigenvectors. The first step towards this program were taken by [33]. A few examples
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of results of such a statistical treatment for 2-dimensional fluids are described in [31]. It
describes how one may not only analytically compute the distribution of maxima, or minima,
but also the population of singularities and the length of caustic lines. This will represent a
major extension of statistical descriptions that were solely based on the eigenvalue fields (see
e.g. [29, 57]). Moreover, the ability to infer solid analytical results for a range of parameters
quantifying the cosmic web will be a key towards identifying properties of the cosmic web
that are sensitive to the underlying cosmology. This, in turn, would enable the use of these
properties to infer cosmological parameters, investigate the nature of dark matter and dark
energy, trace the effects of deviations from standard gravity, and other issues of general
cosmological interest.

Notwithstanding the observation that the caustic skeleton inferred from the Zel’dovich
approximation appears to closely adhere to the full nonlinear structure seen in N -body sim-
ulations, an aspect that still needs to be addressed in detail is the influence of the dynamical
evolution on the the developing caustic structure. This concerns in particular the descrip-
tion of the dynamics of the system. Given the nature of singularities, the process of caustic
formation might be very sensitive to minor deviations of the mass element deformations and
hence the modelling of the dynamics. This may even strongly affect the predicted population
of caustics and their spatial organization in the skeleton of the cosmic web. The Zel’dovich
formalism [73] is a first-order Lagrangian approximation. A range of studies have shown
that second order Lagrangian descriptions, often named 2LPT, provide a considerably more
accurate approximation of in particular the mildly nonlinear phases that are critical for un-
derstanding the cosmic web [15, 17, 19, 20, 61]. In addition to a follow-up study in which
we explore the caustic structure according to 2LPT and possible systematic differences with
that predicated by the Zel’dovich approximation, we will also systematically investigate the
caustic skeleton in the context of the adhesion formalism [35, 36, 38, 41]. Representing a fully
nonlinear extension of the Zel’dovich formalism through the inclusion of an effective gravita-
tional interaction term for the emerging structures, it is capable of following the hierarchical
buildup of structure. While it provides a highly insightful model for the hierarchically evolv-
ing cosmic web, it also affects the flow patterns and hence the multistream structure in the
cosmic mass distribution. In how far this will affect the caustic skeleton remains a major
question for our work.

Finally, of immediate practical interest to our project will be identification of the vari-
ous classes of singularities that are populating the Local Universe. On the basis of advanced
Bayesian reconstruction techniques, various groups have been able to infer constrained re-
alizations of the implied Gaussian primordial density and velocity field in a given cosmic
volume [44, 45, 50, 51]. From these constrained initial density and deformation fields, we
may subsequently determine the caustic structure in the Local Universe (see e.g. [40]). The
resulting caustic skeleton of the local cosmic web may then be confronted with the structures
– clusters, groups and galaxies – that surveys have observed. Ultimately, this will enable us
to reconstruct the cosmic history of objects and structures in the local Universe.

In summary, the ability to relate the formation and hierarchical evolution of structure in
the Universe to the tale of the emergence and fate of singularities in the cosmic density field
provides the basis for a dynamical theory for the development of the cosmic web, including
that of its substructure. This will be the principal question and subject of the sequel to the
work that we have presented here.
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A Zel’dovich approximation

The Zel’dovich approximation is the first order approximation of a Lagrangian pressureless
fluid evolving under self gravity, [73]. The Zel’dovich approximation is the simplest example
of a Lagrangian fluid with Hamiltonian dynamics and serves as a good illustration of the
caustic conditions. The displacement map of the Zel’dovich approximation factors into a
term depending on time and a term depending on the initial conditions

st(q) = −b+(t)∇qΨ(q), (A.1)

with the linearized velocity potential Ψ(q) and growing mode b+(t). The growing mode can be
obtained from linear Eulerian perturbation theory. Up to linear order, the linearized velocity
potential is proportional to the linearly extrapolated gravitational potential at the current
epoch φ0(q), i.e.

Ψ(q) =
2

3Ω0H2
0

φ0(q), (A.2)

with current Hubble constant H0 and current energy density Ω0. The linearized velocity
potential Ψ(q) encodes the initial conditions while the growing mode b+(t) encodes the cos-
mological evolution of the fluid. For the Zel’dovich approximation it is common to define the
deformation tensor as

ψij =
∂2Ψ(q)

∂qi∂qj
(A.3)

with eigenvalues λi(q) satisfying µi(q, t) = −b+(t)λi(q). The density in the Zel’dovich ap-
proximation can be expressed as

ρ(x′, t) =
∑

q∈A(x′,t)

ρi(q)

(1− b+(t)λ1(q))(1− b+(t)λ2(q))(1− b+(t)λd(q))
, (A.4)
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with ρi the initial density field. Caustics occur at q at time t if and only if

λi(q) =
1

b+(t)
(A.5)

for at least one i. The eigenvalues λi are functions determined by the initial gravitational
field. Equation (A.5) can be pictured as a hyperplane at height 1/b+(t). The intersection of
this plane with the graph of the eigenvalues undergoes shell-crossing at that time. For the
Zel’dovich approximation the caustic conditions in terms of the eigenvalues λi are given by

A1 = {q ∈ L|λi(q) 6= 1/b+(t) for all t and i}, (A.6)
Ai

2(t) = {q ∈ L|λi(q) = 1/b+(t)}, (A.7)
Ai

3(t) = {q ∈ L|q ∈ Ai
2(t) and λi,i(q) = 0}, (A.8)

Ai
4(t) = {q ∈ L|q ∈ Ai

3(t) and λi,ii(q) = 0}, (A.9)
Ai

5(t) = {q ∈ L|q ∈ Ai
4(t) and λi,iii(q) = 0}, (A.10)

D±ij4 (t) = {q ∈ L|λi(q) = λj(q) = 1/b+(t) and sign(SM) = ±1}, (A.11)

Dij
5 (t) = {q ∈ L|q ∈ Dij

4 (t) and (λi − λj),i(q) = (λi − λj),j(q) = 0}, (A.12)

and the points at which the topology of above sets changes

Ai+
3 = {q ∈ L|q ∈ Ai

2 ∧ λi(q) max-/minimum of λi}, (A.13)
Ai−

3 = {q ∈ L|q ∈ Ai
2 saddle point of λi}, (A.14)

Ai+
4 = {q ∈ L|q ∈ Ai

3 ∧ λi,ii(q) max-/minimum of λi,ii|A2}, (A.15)
Ai−

4 = {q ∈ L|q ∈ Ai
3 saddle point of λi,ii|A2}, (A.16)

Dij±
4 = {q ∈ L|q ∈ D±ij4 ∧ λi(q) = λj(q) max-/minimum of λi|D±ij

4
= λj |D±ij

4
}. (A.17)

with the direction derivatives λi,i = ∇λi · vi, λi,ii = ∇λi,i · vi and λi,iii = ∇λi,ii · vi. Note
that the eigenvectors are defined modulo multiplication by a real number and really represent
lines.

B Lagrangian maps and Lagrangian equivalence

We here shortly describe the mathematical background of symplectic manifolds, Lagrangian
manifolds and Lagrangian maps. For a detailed description and derivations we refer to [11, 12].

B.1 Symplectic manifolds and Lagrangian maps

A 2n-dimensional symplectic manifold (M,ω) is a smooth 2n-dimensional manifoldM , equipped
with a closed nondegenerate bilinear 2-form ω called the symplectic form. Symplectic mani-
folds are always even dimensional for ω to be nondegenerate. In Hamiltonian dynamics the
symplectic form ω can be associated to the Poisson brackets which encodes the dynamics of
the theory. A Lagrangian manifold L of a 2n-dimensional symplectic manifold (M,ω) is a
n-dimensional submanifold of M on which the symplectic form ω vanishes. Let (B, π) be
a Lagrangian fibration of (M,ω), which is a n-dimensional manifold with a projection map
π : M → B for which the fibers π−1(b) are Lagrangian manifolds for all b ∈ B.

An example of a symplectic manifold is phase space consisting of position and canonical

– 51 –



momenta (q1, . . . , qn, p1, . . . pn) with the symplectic form ω =
∑n

i dqi ∧ dpi. An example of
a Lagrangian fibration is {(q1, . . . , qn), π} with the projection map π(q1, . . . , qn, p1, . . . pn) =
(q1, . . . , qn).

Give a symplectic manifold (M,ω) with a Lagrangian fibration (B, π) we can for every
Lagrangian manifold L define a Lagrangian map (π ◦ i) : L → M → B, with i being the
inclusion map sending L into M . Two Lagrangian maps (π1 ◦ i1) : L1 → M1 → B1 and
(π2 ◦ i2) : L2 → M2 → B2 are defined to be Lagrangian equivalent if there exist diffeomor-
phisms σ, τ and ν such that τ ◦ i1 = i2 ◦ σ, ν ◦ π1 = π2 ◦ τ and τ∗ω2 = ω1, or equivalently the
diagram below commutes

L1 (M1, ω1) B1

L2 (M2, ω2) B2

i1 π1

i2 π2
σ τ ν

B.2 Displacement as Lagrangian map

Given a Lagrangian submanifold L we can construct a corresponding Lagrangian map. First
map the Lagrangian submanifold L with the inclusion map i : L → C to the corresponding
points in phase space C, i.e., i : (q, x) 7→ (q, x) for all (q, x) ∈ L. Subsequently map these
points to a base manifold B with the projection map π : C → B. In Lagrangian fluid dy-
namics it is convenient to pick the Eulerian manifold E as the base manifold B and define
the projection map as π : (q, x) 7→ x for all (q, x) ∈ C. As there will always be an exact
correspondence between the Lagrangian manifold L and the Lagrangian submanifold Lt ⊂ C
(there exists a unique point x ∈ E such that (q, x) ∈ Lt for every q ∈ L), we can associate the
Lagrangian map corresponding to Lt with the map xt. In summary, the map xt corresponds
uniquely to a Lagrangian map for fluids with Hamiltonian dynamics.

A Lagrangian map can develop regions in which multiple points in the Lagrangian man-
ifold are mapped to the same point in the base space. The points at which the number of
pre-images of the Lagrangian map changes are known as Lagrangian singularities. Lagrangian
catastrophe theory classifies the stable singularities, stable with respect to small deformations
of L, up to Lagrangian equivalence. Lagrangian equivalence is a generalization of equivalence
up to coordinate transformations. For a precise definition of Lagrangian equivalence we refer
to appendix B.

B.3 Lagrangian map germs

In catastrophe theory it is important to consider the Lagrangian map at a point. This is
achieved by means of Lagrangian germs. Starting with a point p ∈ M we can consider La-
grangian functions Fi : Ui → B for i = 1, 2 for small environments Ui of p which coincide on
the intersection U1∩U2. The equivalence classes of such Lagrangian functions are Lagrangian
germs. The Lagrange equivalence of Lagrangian maps straightforwardly extends to Lagrange
equivalence of Lagrangian germs. These are the equivalence classes used in the classification
of stable Lagrangian maps, where a Lagrangian germ is stable if and only if every sufficiently
small fluctuation on the germ is Lagrange equivalent to the germ.
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A1 : x(q, 1) = (q1, q2, q3) 1 + µ1 = 1 1 + µ2 = 1 1 + µ3 = 1
A2 : x(q, 1) = (q1, q2, q

2
3) 1 + µ1 = 1 1 + µ2 = 1 1 + µ3 = 2q3

µ3,3 = 2
A3 : x(q, 1) = (q1, q2, q1q3 + q33) 1 + µ1 = 1 1 + µ2 = 1 1 + µ3 = 3q23 + q1

µ3,3 = 6q3
µ3,333 = 6

A4 : x(q, 1) = (q1, q2, q1q3 + q43) 1 + µ1 = 1 1 + µ2 = 1 1 + µ3 = q1 + 4q33
µ3,3 = 12q23
µ3,33 = 24q3
µ3,333 = 24

A5 : x(q, 1) = (q1, q2, q1q3 + q2q
2
3 + q53) 1 + µ1 = 1 1 + µ2 = 1 1 + µ3 = q1 + 2q2q3 + 5q43

µ3,3 = 2q2 + 20q33
µ3,33 = 60q23
µ3,333 = 120q3
µ3,3333 = 120

A±3 : x(q, 1) = (q1, q2, (q
2
1 ± q22)q3 + q33) 1 + µ1 = 1 1 + µ2 = 1 1 + µ3 = q21 ± q22 + 3q23

µ3,3 = 6q3
µ3,33 = 6

A±4 : x(q, 1) = (q1, q2, q1q3 ± q22q23 + q43) 1 + µ1 = 1 1 + µ2 = 1 1 + µ3 = q1 ± 2q22q3 + 4q33
µ3,3 = ±2q22 + 12q23
µ3,33 = 24q3
µ3,333 = 24

Table 2: The caustic conditions of the normal forms of the A singularity classes

B.4 Gradient maps

Every Lagrangian germ is Lagrange equivalent to the germ of a gradient map. That is to say,
for every Lagrangian map l = π ◦ i : L → C → E we can for a point (q, x) ∈ L locally write
the map as

l(q1, . . . , qn, x1, . . . , xn) =

(
∂S

∂q1
,
∂S

∂q2
, . . . ,

∂S

∂qn

)
(B.1)

for some function S : Rn → R. The corresponding map x is given by

x(q1, . . . , qn, t) =

(
∂S

∂q1
,
∂S

∂q2
, . . . ,

∂S

∂qn

)
(B.2)

for some time t. By writing S = 1
2q

2 + Ψ for Ψ : R3 × R→ R we obtain

x(q, t) = q +
∂Ψ

∂q
, (B.3)

with the gradient field

s =
∂Ψ

∂q
. (B.4)

The Jacobian of the displacement map[
∂s

∂q

]
ij

=
∂2Ψ

∂qi∂qj
(B.5)
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is symmetric. The set of eigenvectors {vi} can be taken to be orthonormal by which the dual
vectors coincide with the eigenvectors, i.e., v∗i = vi for all i. A Lagrangian map is locally
equivalent to the Zel’dovich approximation.

B.5 Arnol’d’s classification of Lagrangian catastrophes

In section 4.1, we described the classification of Lagrangian singularities in up to three di-
mensions. However the classification extends to higher dimensional singularities. A (n+ 1)-
dimensional fluid can contain stable singularities in the Ai, Di and Ei classes with i ≤ n+ 2,
where the D-class range starts at i = 4 and the E-class is only defined for i = 6, 7, 8. These
singularities decompose into lower-dimensional singularities as illustrated in the unfolding
diagram below.

A1 A2 A3 A4 A5 A6 A7 A8 A9 . . .

D4 D5 D6 D7 D8 A9 . . .

E6 E7 E8

C Caustic conditions of the normal forms

We here verify the caustic conditions for the normal forms in the generic classification of
singularities given in section 5.3. The normal forms of the the Lagrangian singularities given
in section 5.4 follow analogously.

The eigenvalue fields and corresponding derivatives in the direction of the eigenvector
fields are given in table 2. The eigenvalues of the normal form for the trivial (A1) case equal
1 and thus satisfy the condition 1 + µi 6= 0 for all i. The third eigenvalue of the normal form
of the fold (A2) singularity equals −1 in the origin. The derivative of the eigenvalue field in
the direction of the corresponding eigenvector field does not vanish in the origin. The normal
form thus satisfies the caustic conditions of the fold singularity. The normal forms of the
remaining singularities follow analogously.
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